A note on the validity of cross-validation for evaluating autoregressive time series prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.csda.2017.11.003
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Mokkadem, Abdelkader, 1988. "Mixing properties of ARMA processes," Stochastic Processes and their Applications, Elsevier, vol. 29(2), pages 309-315, September.
- Borra, Simone & Di Ciaccio, Agostino, 2010. "Measuring the prediction error. A comparison of cross-validation, bootstrap and covariance penalty methods," Computational Statistics & Data Analysis, Elsevier, vol. 54(12), pages 2976-2989, December.
- Andrews, Donald W K, 1987. "Consistency in Nonlinear Econometric Models: A Generic Uniform Law of Large Numbers [On Unification of the Asymptotic Theory of Nonlinear Econometric Models]," Econometrica, Econometric Society, vol. 55(6), pages 1465-1471, November.
- Bergmeir, Christoph & Costantini, Mauro & Benítez, José M., 2014. "On the usefulness of cross-validation for directional forecast evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 132-143.
- Racine, Jeff, 2000. "Consistent cross-validatory model-selection for dependent data: hv-block cross-validation," Journal of Econometrics, Elsevier, vol. 99(1), pages 39-61, November.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christoph Bergmeir & Rob J Hyndman & Bonsoo Koo, 2015. "A Note on the Validity of Cross-Validation for Evaluating Time Series Prediction," Monash Econometrics and Business Statistics Working Papers 10/15, Monash University, Department of Econometrics and Business Statistics.
- Pinto, Jeronymo Marcondes & Marçal, Emerson Fernandes, 2019. "Cross-validation based forecasting method: a machine learning approach," Textos para discussão 498, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Filip Stanek, 2021. "Optimal Out-of-Sample Forecast Evaluation under Stationarity," CERGE-EI Working Papers wp712, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
- Mariana Oliveira & Luís Torgo & Vítor Santos Costa, 2021. "Evaluation Procedures for Forecasting with Spatiotemporal Data," Mathematics, MDPI, vol. 9(6), pages 1-27, March.
- Bergmeir, Christoph & Costantini, Mauro & Benítez, José M., 2014. "On the usefulness of cross-validation for directional forecast evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 132-143.
- Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
- M. Hashem Pesaran & Yongcheol Shin, 2002.
"Long-Run Structural Modelling,"
Econometric Reviews, Taylor & Francis Journals, vol. 21(1), pages 49-87.
- Pesaran,H.M. & Shin,Y., 1995. "Long-Run Structural Modelling," Cambridge Working Papers in Economics 9419, Faculty of Economics, University of Cambridge.
- Mohammad Hashem Pesaran & Yongcheol Shin, 1999. "Long-Run Structural Modelling," Edinburgh School of Economics Discussion Paper Series 44, Edinburgh School of Economics, University of Edinburgh.
- Sokbae Lee & Myung Hwan Seo & Youngki Shin, 2017.
"Correction,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(518), pages 883-883, April.
- Hwan Seo, Myung, 2011. "Estimation Of Nonlinear Error Correction Models," Econometric Theory, Cambridge University Press, vol. 27(2), pages 201-234, April.
- Youngki Shin, 2009. "Length-bias Correction in Transformation Models with Supplementary Data," Econometric Reviews, Taylor & Francis Journals, vol. 28(6), pages 658-681.
- Seo, Myunghwan, 2006. "Bootstrap testing for the null of no cointegration in a threshold vector error correction model," Journal of Econometrics, Elsevier, vol. 134(1), pages 129-150, September.
- Myung Hwan Seo, 2007. "Estimation of Nonlinear Error CorrectionModels," STICERD - Econometrics Paper Series 517, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Seo, Myung Hwan, 2007. "Estimation of nonlinear error correction models," LSE Research Online Documents on Economics 6802, London School of Economics and Political Science, LSE Library.
- Sergei Koulayev & Marc Rysman & Scott Schuh & Joanna Stavins, 2016.
"Explaining adoption and use of payment instruments by US consumers,"
RAND Journal of Economics, RAND Corporation, vol. 47(2), pages 293-325, May.
- Sergei Koulayev & Marc Rysman & Scott Schuh & Joanna Stavins, 2012. "Explaining adoption and use of payment instruments by U. S. consumers," Working Papers 12-14, Federal Reserve Bank of Boston.
- Sergei Koulayev & Marc Rysman & Scott Schuh & Joanna Stavins, 2015. "Explaining adoption and use of payment instruments by U.S. consumers," Boston University - Department of Economics - Working Papers Series wp2015-004, Boston University - Department of Economics.
- Escanciano, Juan Carlos & Jacho-Chávez, David T., 2010. "Approximating the critical values of Cramér-von Mises tests in general parametric conditional specifications," Computational Statistics & Data Analysis, Elsevier, vol. 54(3), pages 625-636, March.
- Mayer, Walter J., 1999. "An extension of the maximum score estimator for disequilibrium models," Economics Letters, Elsevier, vol. 64(2), pages 143-149, August.
- Kock, Anders Bredahl & Teräsvirta, Timo, 2014.
"Forecasting performances of three automated modelling techniques during the economic crisis 2007–2009,"
International Journal of Forecasting, Elsevier, vol. 30(3), pages 616-631.
- Anders Bredahl Kock & Timo Teräsvirta, 2011. "Forecasting performance of three automated modelling techniques during the economic crisis 2007-2009," CREATES Research Papers 2011-28, Department of Economics and Business Economics, Aarhus University.
- Chen, Song Xi & Guo, Bin & Qiu, Yumou, 2023. "Testing and signal identification for two-sample high-dimensional covariances via multi-level thresholding," Journal of Econometrics, Elsevier, vol. 235(2), pages 1337-1354.
- Čížek, Pavel & Koo, Chao Hui, 2021.
"Jump-preserving varying-coefficient models for nonlinear time series,"
Econometrics and Statistics, Elsevier, vol. 19(C), pages 58-96.
- Cizek, Pavel & Koo, Chao, 2017. "Jump-Preserving Varying-Coefficient Models for Nonlinear Time Series," Discussion Paper 2017-017, Tilburg University, Center for Economic Research.
- Cizek, Pavel & Koo, Chao, 2017. "Jump-Preserving Varying-Coefficient Models for Nonlinear Time Series," Other publications TiSEM c849e96f-3ad1-461e-96c6-f, Tilburg University, School of Economics and Management.
- de Jong, Robert M. & Woutersen, Tiemen, 2011.
"Dynamic Time Series Binary Choice,"
Econometric Theory, Cambridge University Press, vol. 27(4), pages 673-702, August.
- Tiemen Woutersen & Robert M. de Jong, 2004. "Dynamic time series binary choice," Econometric Society 2004 North American Summer Meetings 365, Econometric Society.
- Robert M. de Jong & Tiemen Woutersen, 2007. "Dynamic time series binary choice," Economics Working Paper Archive 538, The Johns Hopkins University,Department of Economics.
- Costantini, Mauro & Cuaresma, Jesus Crespo & Hlouskova, Jaroslava, 2014.
"Can Macroeconomists Get Rich Forecasting Exchange Rates?,"
Economics Series
305, Institute for Advanced Studies.
- Costantini, Mauro & Crespo Cuaresma, Jesus & Hlouskova, Jaroslava, 2014. "Can Macroeconomists Get Rich Forecasting Exchange Rates?," Department of Economics Working Paper Series 176, WU Vienna University of Economics and Business.
- Jesus Crespo Cuaresma & Mauro Costantini & Jaroslava Hlouskova, 2014. "Can Macroeconomists Get Rich Forecasting Exchange Rates?," Department of Economics Working Papers wuwp176, Vienna University of Economics and Business, Department of Economics.
- Lei, J., 2013. "Smoothed Spatial Maximum Score Estimation of Spatial Autoregressive Binary Choice Panel Models," Other publications TiSEM d63bf400-7ff2-4a1c-8067-1, Tilburg University, School of Economics and Management.
- Evangelos Spiliotis & Fotios Petropoulos & Vassilios Assimakopoulos, 2023. "On the Disagreement of Forecasting Model Selection Criteria," Forecasting, MDPI, vol. 5(2), pages 1-12, June.
- Gregory Connor & Matthias Hagmann & Oliver Linton, 2007.
"Efficient Estimation of a Semiparametric Characteristic- Based Factor Model of Security Returns,"
Swiss Finance Institute Research Paper Series
07-26, Swiss Finance Institute.
- Gregory Connor & Oliver Linton & Matthias Hagmann, 2007. "Efficient Estimation of a Semiparametric Characteristic-Based Factor Model of Security Returns," FMG Discussion Papers dp599, Financial Markets Group.
- Connor, Gregory & Hagmann, Matthias & Linton, Oliver, 2007. "Efficient estimation of a semiparametric characteristic-based factor model of security returns," LSE Research Online Documents on Economics 3775, London School of Economics and Political Science, LSE Library.
- Connor, Gregory & Hagmann, Matthias & Linton, Oliver, 2007. "Efficient estimation of a semiparametric characteristic-based factor model of security returns," LSE Research Online Documents on Economics 24504, London School of Economics and Political Science, LSE Library.
- Gregory Connor & Matthias Hagmann & Oliver Linton, 2007. "Efficient Estimation of a SemiparametricCharacteristic-Based Factor Model of Security Returns," STICERD - Econometrics Paper Series 524, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
More about this item
Keywords
Cross-validation; Time series; Autoregression;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:120:y:2018:i:c:p:70-83. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.