IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2022i13p2156-d843797.html
   My bibliography  Save this article

Using Financial News Sentiment for Stock Price Direction Prediction

Author

Listed:
  • Bledar Fazlija

    (School of Management and Law, ZHAW Zurich University of Applied Sciences, 8400 Winterthur, Switzerland)

  • Pedro Harder

    (School of Management and Law, ZHAW Zurich University of Applied Sciences, 8400 Winterthur, Switzerland)

Abstract

Using sentiment information in the analysis of financial markets has attracted much attention. Natural language processing methods can be used to extract market sentiment information from texts such as news articles. The objective of this paper is to extract financial market sentiment information from news articles and use the estimated sentiment scores to predict the price direction of the stock market index Standard & Poor’s 500. To achieve the best possible performance in sentiment classification, state-of-the-art bidirectional encoder representations from transformers (BERT) models are used. The pretrained transformer networks are fine-tuned on a labeled financial text dataset and applied to news articles from known providers of financial news content to predict their sentiment scores. The generated sentiment scores for the titles of the given news articles, for the (text) content of said news articles, and for the combined title-content consideration are posited against past time series information of the stock market index. To forecast the price direction of the stock market index, the predicted sentiment scores are used in a simple strategy and as features for a random forest classifier. The results show that sentiment scores based on news content are particularly useful for stock price direction prediction.

Suggested Citation

  • Bledar Fazlija & Pedro Harder, 2022. "Using Financial News Sentiment for Stock Price Direction Prediction," Mathematics, MDPI, vol. 10(13), pages 1-20, June.
  • Handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2156-:d:843797
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/13/2156/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/13/2156/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
    2. Wataru Souma & Irena Vodenska & Hideaki Aoyama, 2019. "Enhanced news sentiment analysis using deep learning methods," Journal of Computational Social Science, Springer, vol. 2(1), pages 33-46, January.
    3. Pekka Malo & Ankur Sinha & Pekka Korhonen & Jyrki Wallenius & Pyry Takala, 2014. "Good debt or bad debt: Detecting semantic orientations in economic texts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 782-796, April.
    4. Fama, Eugene F, 1970. "Efficient Capital Markets: A Review of Theory and Empirical Work," Journal of Finance, American Finance Association, vol. 25(2), pages 383-417, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Costola, Michele & Hinz, Oliver & Nofer, Michael & Pelizzon, Loriana, 2023. "Machine learning sentiment analysis, COVID-19 news and stock market reactions," Research in International Business and Finance, Elsevier, vol. 64(C).
    2. Felix Drinkall & Janet B. Pierrehumbert & Stefan Zohren, 2025. "When Dimensionality Hurts: The Role of LLM Embedding Compression for Noisy Regression Tasks," Papers 2502.02199, arXiv.org.
    3. Yinheng Li & Shaofei Wang & Han Ding & Hang Chen, 2023. "Large Language Models in Finance: A Survey," Papers 2311.10723, arXiv.org, revised Jul 2024.
    4. Yujia Hu, 2023. "A Heuristic Approach to Forecasting and Selection of a Portfolio with Extra High Dimensions," Mathematics, MDPI, vol. 11(6), pages 1-21, March.
    5. Denisa Millo & Blerina Vika & Nevila Baci, 2024. "Integrating Natural Language Processing Techniques of Text Mining Into Financial System: Applications and Limitations," Papers 2412.20438, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Duygu Ider & Stefan Lessmann, 2022. "Forecasting Cryptocurrency Returns from Sentiment Signals: An Analysis of BERT Classifiers and Weak Supervision," Papers 2204.05781, arXiv.org, revised Mar 2023.
    2. Moritz Scherrmann, 2023. "Multi-Label Topic Model for Financial Textual Data," Papers 2311.07598, arXiv.org.
    3. Prajwal Eachempati & Praveen Ranjan Srivastava, 2021. "Accounting for unadjusted news sentiment for asset pricing," Qualitative Research in Financial Markets, Emerald Group Publishing Limited, vol. 13(3), pages 383-422, May.
    4. Kao, Yu-Sheng & Day, Min-Yuh & Chou, Ke-Hsin, 2024. "A comparison of bitcoin futures return and return volatility based on news sentiment contemporaneously or lead-lag," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    5. Bommes, Elisabeth & Chen, Cathy Yi-Hsuan & Härdle, Wolfgang Karl, 2018. "Textual Sentiment and Sector specific reaction," IRTG 1792 Discussion Papers 2018-043, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".
    6. David M. Ritzwoller & Joseph P. Romano, 2019. "Uncertainty in the Hot Hand Fallacy: Detecting Streaky Alternatives to Random Bernoulli Sequences," Papers 1908.01406, arXiv.org, revised Apr 2021.
    7. Shazia Ghani, 2011. "A re-visit to Minsky after 2007 financial meltdown," Post-Print halshs-01027435, HAL.
    8. Christiane Goodfellow & Dirk Schiereck & Steffen Wippler, 2013. "Are behavioural finance equity funds a superior investment? A note on fund performance and market efficiency," Journal of Asset Management, Palgrave Macmillan, vol. 14(2), pages 111-119, April.
    9. Cagli, Efe Caglar & Taskin, Dilvin & Evrim Mandaci, Pınar, 2019. "The short- and long-run efficiency of energy, precious metals, and base metals markets: Evidence from the exponential smooth transition autoregressive models," Energy Economics, Elsevier, vol. 84(C).
    10. Andrew Weinbach & Rodney J. Paul, 2009. "National television coverage and the behavioural bias of bettors: the American college football totals market," International Gambling Studies, Taylor & Francis Journals, vol. 9(1), pages 55-66, April.
    11. Oxelheim, Lars & Rafferty, Michael, 2005. "On the static efficiency of secondary bond markets," Journal of Multinational Financial Management, Elsevier, vol. 15(2), pages 117-135, April.
    12. Shi, Huai-Long & Zhou, Wei-Xing, 2022. "Factor volatility spillover and its implications on factor premia," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 80(C).
    13. Nuruddeen Usman & Kodili Nwanneka & Nduka, 2023. "Announcement Effect of COVID-19 on Cryptocurrencies," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 3(3), pages 1-4.
    14. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    15. Alagidede, Paul & Panagiotidis, Theodore, 2009. "Modelling stock returns in Africa's emerging equity markets," International Review of Financial Analysis, Elsevier, vol. 18(1-2), pages 1-11, March.
    16. Camille Baulant & Nivine Albouz, 2021. "Has financial globalization since 1990 reduced income inequality: the role of rating announcements on the volatility and the returns of the Brazilian Financial Market [Les annonces de notation souv," Working Papers hal-03258994, HAL.
    17. Carlo Rosa & Giovanni Verga, 2006. "The Impact of Central Bank Announcements on Asset Prices in Real Time: Testing the Efficiency of the Euribor Futures Market," CEP Discussion Papers dp0764, Centre for Economic Performance, LSE.
    18. Choi, Gahyun & Park, Kwangyeol & Yi, Eojin & Ahn, Kwangwon, 2023. "Price fairness: Clean energy stocks and the overall market," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    19. Sellin, Peter, 1998. "Monetary Policy and the Stock Market: Theory and Empirical Evidence," Working Paper Series 72, Sveriges Riksbank (Central Bank of Sweden).
    20. Aaryan Gupta & Vinya Dengre & Hamza Abubakar Kheruwala & Manan Shah, 2020. "Comprehensive review of text-mining applications in finance," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-25, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2022:i:13:p:2156-:d:843797. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.