IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v170y2022ics0167947322000263.html
   My bibliography  Save this article

Bayesian spatio-temporal models for stream networks

Author

Listed:
  • Santos-Fernandez, Edgar
  • Ver Hoef, Jay M.
  • Peterson, Erin E.
  • McGree, James
  • Isaak, Daniel J.
  • Mengersen, Kerrie

Abstract

Spatio-temporal models are widely used in many research areas including ecology. The recent proliferation of the use of in-situ sensors in streams and rivers supports space-time water quality modelling and monitoring in near real-time. A new family of spatio-temporal models is introduced. These models incorporate spatial dependence using stream distance while temporal autocorrelation is captured using vector autoregression approaches. Several variations of these novel models are proposed using a Bayesian framework. The results show that our proposed models perform well using spatio-temporal data collected from real stream networks, particularly in terms of out-of-sample RMSPE. This is illustrated considering a case study of water temperature data in the northwestern United States.

Suggested Citation

  • Santos-Fernandez, Edgar & Ver Hoef, Jay M. & Peterson, Erin E. & McGree, James & Isaak, Daniel J. & Mengersen, Kerrie, 2022. "Bayesian spatio-temporal models for stream networks," Computational Statistics & Data Analysis, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:csdana:v:170:y:2022:i:c:s0167947322000263
    DOI: 10.1016/j.csda.2022.107446
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322000263
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107446?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. David O'Donnell & Alastair Rushworth & Adrian W. Bowman & E. Marian Scott & Mark Hallard, 2014. "Flexible regression models over river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(1), pages 47-63, January.
    2. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    3. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    4. Guillaume Bal & Etienne Rivot & Jean-Luc Baglinière & Jonathan White & Etienne Prévost, 2014. "A Hierarchical Bayesian Model to Quantify Uncertainty of Stream Water Temperature Forecasts," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-24, December.
    5. Abhirup Datta & Sudipto Banerjee & Andrew O. Finley & Alan E. Gelfand, 2016. "Hierarchical Nearest-Neighbor Gaussian Process Models for Large Geostatistical Datasets," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(514), pages 800-812, April.
    6. Ver Hoef, Jay & Peterson, Erin & Clifford, David & Shah, Rohan, 2014. "SSN: An R Package for Spatial Statistical Modeling on Stream Networks," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i03).
    7. Felipe Tagle & Stefano Castruccio & Paola Crippa & Marc G. Genton, 2019. "A Non‐Gaussian Spatio‐Temporal Model for Daily Wind Speeds Based on a Multi‐Variate Skew‐t Distribution," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(3), pages 312-326, May.
    8. Peterson, Erin & Ver Hoef, Jay, 2014. "STARS: An ArcGIS Toolset Used to Calculate the Spatial Information Needed to Fit Spatial Statistical Models to Stream Network Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i02).
    9. Michael Beenstock & Daniel Felsenstein, 2019. "The Econometric Analysis of Non-Stationary Spatial Panel Data," Advances in Spatial Science, Springer, number 978-3-030-03614-0.
    10. Jonathan R. Stroud & Peter Müller & Bruno Sansó, 2001. "Dynamic models for spatiotemporal data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(4), pages 673-689.
    11. Posa, D., 1993. "A simple description of spatial-temporal processes," Computational Statistics & Data Analysis, Elsevier, vol. 15(4), pages 425-437, May.
    12. Michael Beenstock & Daniel Felsenstein, 2019. "Spatial Vector Autoregressions," Advances in Spatial Science, in: The Econometric Analysis of Non-Stationary Spatial Panel Data, chapter 0, pages 129-161, Springer.
    13. Ver Hoef, Jay M. & Peterson, Erin E., 2010. "A Moving Average Approach for Spatial Statistical Models of Stream Networks," Journal of the American Statistical Association, American Statistical Association, vol. 105(489), pages 6-18.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsung-Ta David Hsu & Danlin Yu & Meiyin Wu, 2023. "Predicting Fecal Indicator Bacteria Using Spatial Stream Network Models in A Mixed-Land-Use Suburban Watershed in New Jersey, USA," IJERPH, MDPI, vol. 20(6), pages 1-17, March.
    2. Eric W Fox & Jay M Ver Hoef & Anthony R Olsen, 2020. "Comparing spatial regression to random forests for large environmental data sets," PLOS ONE, Public Library of Science, vol. 15(3), pages 1-22, March.
    3. Ying Man & Fangwen Zhou & Baoshan Cui, 2023. "Process–Based Identification of Key Tidal Creeks Influenced by Reclamation Activities," Sustainability, MDPI, vol. 15(10), pages 1-11, May.
    4. Tilman M. Davies & Sudipto Banerjee & Adam P. Martin & Rose E. Turnbull, 2022. "A nearest‐neighbour Gaussian process spatial factor model for censored, multi‐depth geochemical data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(4), pages 1014-1043, August.
    5. Seoncheol Park & Hee‐Seok Oh, 2022. "Lifting scheme for streamflow data in river networks," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(2), pages 467-490, March.
    6. Puwasala Gamakumara & Edgar Santos-Fernandez & Priyanga Dilini Talagala & Rob J Hyndman & Kerrie Mengersen & Catherine Leigh, 2023. "Conditional Normalization in Time Series Analysis," Monash Econometrics and Business Statistics Working Papers 10/23, Monash University, Department of Econometrics and Business Statistics.
    7. Pebesma, Edzer & Bivand, Roger & Ribeiro, Paulo Justiniano, 2015. "Software for Spatial Statistics," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 63(i01).
    8. Ver Hoef, Jay & Peterson, Erin & Clifford, David & Shah, Rohan, 2014. "SSN: An R Package for Spatial Statistical Modeling on Stream Networks," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i03).
    9. Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
    10. Edgar Santos‐Fernandez & Erin E. Peterson & Julie Vercelloni & Em Rushworth & Kerrie Mengersen, 2021. "Correcting misclassification errors in crowdsourced ecological data: A Bayesian perspective," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 147-173, January.
    11. Felipe Tagle & Marc G. Genton & Andrew Yip & Suleiman Mostamandi & Georgiy Stenchikov & Stefano Castruccio, 2020. "Rejoinder to the discussion on A high‐resolution bilevel skew‐t stochastic generator for assessing Saudi Arabia's wind energy resources," Environmetrics, John Wiley & Sons, Ltd., vol. 31(7), November.
    12. Matthew Heiner & Matthew J. Heaton & Benjamin Abbott & Philip White & Camille Minaudo & Rémi Dupas, 2023. "Model-Based Clustering of Trends and Cycles of Nitrate Concentrations in Rivers Across France," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 28(1), pages 74-98, March.
    13. Brian Gray & Vyacheslav Lyubchich & Yulia Gel & James Rogala & Dale Robertson & Xiaoqiao Wei, 2016. "Estimation of river and stream temperature trends under haphazard sampling," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 25(1), pages 89-105, March.
    14. Auerbach, Jonathan & Wan, Phyllis, 2020. "Forecasting the urban skyline with extreme value theory," International Journal of Forecasting, Elsevier, vol. 36(3), pages 814-828.
    15. Peterson, Erin & Ver Hoef, Jay, 2014. "STARS: An ArcGIS Toolset Used to Calculate the Spatial Information Needed to Fit Spatial Statistical Models to Stream Network Data," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 56(i02).
    16. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    17. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    18. Francis,David C. & Kubinec ,Robert, 2022. "Beyond Political Connections : A Measurement Model Approach to Estimating Firm-levelPolitical Influence in 41 Economies," Policy Research Working Paper Series 10119, The World Bank.
    19. Matthias Katzfuss & Joseph Guinness & Wenlong Gong & Daniel Zilber, 2020. "Vecchia Approximations of Gaussian-Process Predictions," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 25(3), pages 383-414, September.
    20. Yongping Bao & Ludwig Danwitz & Fabian Dvorak & Sebastian Fehrler & Lars Hornuf & Hsuan Yu Lin & Bettina von Helversen, 2022. "Similarity and Consistency in Algorithm-Guided Exploration," CESifo Working Paper Series 10188, CESifo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:170:y:2022:i:c:s0167947322000263. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.