IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v38y2022i4p1531-1545.html
   My bibliography  Save this article

Evaluating quantile forecasts in the M5 uncertainty competition

Author

Listed:
  • Chen, Zhi
  • Gaba, Anil
  • Tsetlin, Ilia
  • Winkler, Robert L.

Abstract

Probabilistic forecasts are necessary for robust decisions in the face of uncertainty. The M5 Uncertainty competition required participating teams to forecast nine quantiles for unit sales of various products at various aggregation levels and for different time horizons. This paper evaluates the forecasting performance of the quantile forecasts at different aggregation levels and at different quantile levels. We contrast this with some theoretical predictions, and discuss potential implications and promising future research directions for the practice of probabilistic forecasting.

Suggested Citation

  • Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "Evaluating quantile forecasts in the M5 uncertainty competition," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1531-1545.
  • Handle: RePEc:eee:intfor:v:38:y:2022:i:4:p:1531-1545
    DOI: 10.1016/j.ijforecast.2022.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207022000449
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2022.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
    2. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    3. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
    4. Hollyman, Ross & Petropoulos, Fotios & Tipping, Michael E., 2021. "Understanding forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 294(1), pages 149-160.
    5. Victor Richmond R. Jose & Robert L. Winkler, 2009. "Evaluating Quantile Assessments," Operations Research, INFORMS, vol. 57(5), pages 1287-1297, October.
    6. Robert L. Winkler & Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose, 2019. "Probability Forecasts and Their Combination: A Research Perspective," Decision Analysis, INFORMS, vol. 16(4), pages 239-260, December.
    7. Anil Gaba & Ilia Tsetlin & Robert L. Winkler, 2017. "Combining Interval Forecasts," Decision Analysis, INFORMS, vol. 14(1), pages 1-20, March.
    8. Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2017. "Coherent Probabilistic Forecasts for Hierarchical Time Series," Monash Econometrics and Business Statistics Working Papers 3/17, Monash University, Department of Econometrics and Business Statistics.
    9. George Athanasopoulos & Nikolaos Kourentzes, 2020. "On the Evaluation of Hierarchical Forecasts," Monash Econometrics and Business Statistics Working Papers 2/20, Monash University, Department of Econometrics and Business Statistics.
    10. Rob J. Hyndman & George Athanasopoulos, 2014. "Optimally Reconciling Forecasts in a Hierarchy," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 35, pages 42-48, Fall.
    11. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    12. Kriti Jain & Kanchan Mukherjee & J. Neil Bearden & Anil Gaba, 2013. "Unpacking the Future: A Nudge Toward Wider Subjective Confidence Intervals," Management Science, INFORMS, vol. 59(9), pages 1970-1987, September.
    13. Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose & Robert L. Winkler, 2017. "Quantile Evaluation, Sensitivity to Bracketing, and Sharing Business Payoffs," Operations Research, INFORMS, vol. 65(3), pages 712-728, June.
    14. Mas-Colell, Andreu & Whinston, Michael D. & Green, Jerry R., 1995. "Microeconomic Theory," OUP Catalogue, Oxford University Press, number 9780195102680.
    15. Souhaib Ben Taieb & James W. Taylor & Rob J. Hyndman, 2021. "Hierarchical Probabilistic Forecasting of Electricity Demand With Smart Meter Data," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(533), pages 27-43, March.
    16. Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Te Bao & Brice Corgnet & Nobuyuki Hanaki & Katsuhiko Okada & Yohanes E. Riyanto & Jiahua Zhu, 2022. "Financial Forecasting in the Lab and the Field: Qualified Professionals vs. Smart Students," ISER Discussion Paper 1156r, Institute of Social and Economic Research, Osaka University, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    2. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    3. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    4. Di Fonzo, Tommaso & Girolimetto, Daniele, 2024. "Forecast combination-based forecast reconciliation: Insights and extensions," International Journal of Forecasting, Elsevier, vol. 40(2), pages 490-514.
    5. Girolimetto, Daniele & Athanasopoulos, George & Di Fonzo, Tommaso & Hyndman, Rob J., 2024. "Cross-temporal probabilistic forecast reconciliation: Methodological and practical issues," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1134-1151.
    6. Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
    7. Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
    8. Di Fonzo, Tommaso & Girolimetto, Daniele, 2023. "Cross-temporal forecast reconciliation: Optimal combination method and heuristic alternatives," International Journal of Forecasting, Elsevier, vol. 39(1), pages 39-57.
    9. Lila, Maurício Franca & Meira, Erick & Cyrino Oliveira, Fernando Luiz, 2022. "Forecasting unemployment in Brazil: A robust reconciliation approach using hierarchical data," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    10. Corani, Giorgio & Azzimonti, Dario & Rubattu, Nicolò, 2024. "Probabilistic reconciliation of count time series," International Journal of Forecasting, Elsevier, vol. 40(2), pages 457-469.
    11. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    12. Pritularga, Kandrika F. & Svetunkov, Ivan & Kourentzes, Nikolaos, 2021. "Stochastic coherency in forecast reconciliation," International Journal of Production Economics, Elsevier, vol. 240(C).
    13. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    14. Zhang, Bohan & Panagiotelis, Anastasios & Kang, Yanfei, 2024. "Discrete forecast reconciliation," European Journal of Operational Research, Elsevier, vol. 318(1), pages 143-153.
    15. Panagiotelis, Anastasios & Athanasopoulos, George & Gamakumara, Puwasala & Hyndman, Rob J., 2021. "Forecast reconciliation: A geometric view with new insights on bias correction," International Journal of Forecasting, Elsevier, vol. 37(1), pages 343-359.
    16. Cengiz, Doruk & Tekgüç, Hasan, 2024. "Counterfactual reconciliation: Incorporating aggregation constraints for more accurate causal effect estimates," International Journal of Forecasting, Elsevier, vol. 40(2), pages 564-580.
    17. Kourentzes, Nikolaos & Athanasopoulos, George, 2021. "Elucidate structure in intermittent demand series," European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
    18. Panagiotelis, Anastasios & Gamakumara, Puwasala & Athanasopoulos, George & Hyndman, Rob J., 2023. "Probabilistic forecast reconciliation: Properties, evaluation and score optimisation," European Journal of Operational Research, Elsevier, vol. 306(2), pages 693-706.
    19. Leprince, Julien & Madsen, Henrik & Møller, Jan Kloppenborg & Zeiler, Wim, 2023. "Hierarchical learning, forecasting coherent spatio-temporal individual and aggregated building loads," Applied Energy, Elsevier, vol. 348(C).
    20. Cengiz, Doruk & Tekgüç, Hasan, 2022. "Counterfactual Reconciliation: Incorporating Aggregation Constraints For More Accurate Causal Effect Estimates," MPRA Paper 114478, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:38:y:2022:i:4:p:1531-1545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.