IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v342y2024i1d10.1007_s10479-024-05882-0.html
   My bibliography  Save this article

Hyperautomation on fuzzy data dredging on four advanced industrial forecasting models to support sustainable business management

Author

Listed:
  • You-Shyang Chen

    (National Chin-Yi University of Technology)

  • Arun Kumar Sangaiah

    (National Yunlin University of Science and Technology
    Lebanese American University)

  • Yu-Pei Lin

    (Hwa Hsia University of Technology)

Abstract

Recently, traditional manufacturing industries have faced two serious gaps and problems in line with effective product-line sales forecasting methods to balance the negative impacts on the performance of the subjective experience, including (1) arbitrary judgment, such as growth rate of expectancy, manager’s experiences, and historical sales data, may cause inaccurately predictive results and severe negative effects, and (2) sales forecasting is a key priority and challenge in the context of considerable product lines that have different properties and need specific models for supporting decision analytics. This study is motivated to propose an advanced hybrid model to utilize the advantages of variation for methods of fuzzy time series (FTS), exponential smoothing (ES), moving average (MA), and regression analysis (RA). To analyze the four product lines—stably growing product (SGP), declining product (DP), irregularly growing product (IGP), and special sales product (SSP)—this study is based on empirical sales data from a leading traditional manufacturer to accurately identify the high potentials of decisive key factors and objectively evaluate the model. Two evaluation standards—the mean absolute percentage error (MAPE) and root mean square error (RMSE), a parameter sensitivity analysis, and comparative analysis—are measured. After implementing the data from the case study, four key reports were conclusively identified. (1) Purely for the RMSE, the best one (10.32) is the ES method in the SGP line. (2) In the DP line, the better one is the RA(2) method, with a relatively low MAPE of 17.78% and RMSE of 26.46. (3) The FTS method is the best choice (MAPE 12.41% and RMSE 18.98) for the IGP line. (4) For the SSP line, the better one (MAPE 24.05 and RMSE 29.34) is the MA method. According to the above reports, although the proposed hybrid model has a general performance for the SSP line, it still has a superior predictor when compared to manager subjective prediction. Interestingly, the proposed model is rarely used, has a new trial with an innovative solution for the traditional manufacturer, and thus realizes applicable values. The study concludes with acceptable and satisfactory results and yields seven important findings and three managerial implications that significantly contribute to decision-making reference for complete sales-production planning for interested parties. Thus, this study benefits and values a conventional industry upgrade from novel application techniques.

Suggested Citation

  • You-Shyang Chen & Arun Kumar Sangaiah & Yu-Pei Lin, 2024. "Hyperautomation on fuzzy data dredging on four advanced industrial forecasting models to support sustainable business management," Annals of Operations Research, Springer, vol. 342(1), pages 215-264, November.
  • Handle: RePEc:spr:annopr:v:342:y:2024:i:1:d:10.1007_s10479-024-05882-0
    DOI: 10.1007/s10479-024-05882-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-05882-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-05882-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.
    2. Yang, Dazhi & Sharma, Vishal & Ye, Zhen & Lim, Lihong Idris & Zhao, Lu & Aryaputera, Aloysius W., 2015. "Forecasting of global horizontal irradiance by exponential smoothing, using decompositions," Energy, Elsevier, vol. 81(C), pages 111-119.
    3. M. A. Ganaie & M. Tanveer & Jatin Jangir, 2023. "EEG signal classification via pinball universum twin support vector machine," Annals of Operations Research, Springer, vol. 328(1), pages 451-492, September.
    4. Golmohammadi, Davood & Radnia, Naeimeh, 2016. "Prediction modeling and pattern recognition for patient readmission," International Journal of Production Economics, Elsevier, vol. 171(P1), pages 151-161.
    5. Thomassey, Sébastien, 2010. "Sales forecasts in clothing industry: The key success factor of the supply chain management," International Journal of Production Economics, Elsevier, vol. 128(2), pages 470-483, December.
    6. Egrioglu, Erol, 2014. "PSO-based high order time invariant fuzzy time series method: Application to stock exchange data," Economic Modelling, Elsevier, vol. 38(C), pages 633-639.
    7. Petropoulos, Fotios & Makridakis, Spyros & Assimakopoulos, Vassilios & Nikolopoulos, Konstantinos, 2014. "‘Horses for Courses’ in demand forecasting," European Journal of Operational Research, Elsevier, vol. 237(1), pages 152-163.
    8. Ben R. Marshall & Nhut H. Nguyen & Nuttawat Visaltanachoti, 2017. "Time series momentum and moving average trading rules," Quantitative Finance, Taylor & Francis Journals, vol. 17(3), pages 405-421, March.
    9. Kang, Yanfei & Hyndman, Rob J. & Smith-Miles, Kate, 2017. "Visualising forecasting algorithm performance using time series instance spaces," International Journal of Forecasting, Elsevier, vol. 33(2), pages 345-358.
    10. Manrui Jiang & Lifen Jia & Zhensong Chen & Wei Chen, 2022. "The two-stage machine learning ensemble models for stock price prediction by combining mode decomposition, extreme learning machine and improved harmony search algorithm," Annals of Operations Research, Springer, vol. 309(2), pages 553-585, February.
    11. Ibrahim Yazici & Omer Faruk Beyca & Omer Faruk Gurcan & Halil Zaim & Dursun Delen & Selim Zaim, 2022. "A comparative analysis of machine learning techniques and fuzzy analytic hierarchy process to determine the tacit knowledge criteria," Annals of Operations Research, Springer, vol. 308(1), pages 753-776, January.
    12. van Donselaar, K.H. & Peters, J. & de Jong, A. & Broekmeulen, R.A.C.M., 2016. "Analysis and forecasting of demand during promotions for perishable items," International Journal of Production Economics, Elsevier, vol. 172(C), pages 65-75.
    13. Tryggvi Jónsson & Pierre Pinson & Henrik Aa. Nielsen & Henrik Madsen, 2014. "Exponential Smoothing Approaches for Prediction in Real-Time Electricity Markets," Energies, MDPI, vol. 7(6), pages 1-23, June.
    14. Qi Feng & J. George Shanthikumar, 2022. "Applications of Stochastic Orders and Stochastic Functions in Inventory and Pricing Problems," Production and Operations Management, Production and Operations Management Society, vol. 31(4), pages 1433-1453, April.
    15. Wudi Wei & Junjun Jiang & Hao Liang & Lian Gao & Bingyu Liang & Jiegang Huang & Ning Zang & Yanyan Liao & Jun Yu & Jingzhen Lai & Fengxiang Qin & Jinming Su & Li Ye & Hui Chen, 2016. "Application of a Combined Model with Autoregressive Integrated Moving Average (ARIMA) and Generalized Regression Neural Network (GRNN) in Forecasting Hepatitis Incidence in Heng County, China," PLOS ONE, Public Library of Science, vol. 11(6), pages 1-13, June.
    16. Shivam Gupta & Sachin Modgil & Samadrita Bhattacharyya & Indranil Bose, 2022. "Artificial intelligence for decision support systems in the field of operations research: review and future scope of research," Annals of Operations Research, Springer, vol. 308(1), pages 215-274, January.
    17. Hao Wu & Haiming Long & Yue Wang & Yanqi Wang, 2021. "Stock index forecasting: A new fuzzy time series forecasting method," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(4), pages 653-666, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    2. Thiyanga S. Talagala & Feng Li & Yanfei Kang, 2019. "Feature-based Forecast-Model Performance Prediction," Monash Econometrics and Business Statistics Working Papers 21/19, Monash University, Department of Econometrics and Business Statistics.
    3. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    4. Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
    5. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios & Chen, Zhi & Gaba, Anil & Tsetlin, Ilia & Winkler, Robert L., 2022. "The M5 uncertainty competition: Results, findings and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1365-1385.
    6. Semenoglou, Artemios-Anargyros & Spiliotis, Evangelos & Makridakis, Spyros & Assimakopoulos, Vassilios, 2021. "Investigating the accuracy of cross-learning time series forecasting methods," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1072-1084.
    7. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
    8. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
    9. Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
    10. Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
    11. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    12. Bojer, Casper Solheim & Meldgaard, Jens Peder, 2021. "Kaggle forecasting competitions: An overlooked learning opportunity," International Journal of Forecasting, Elsevier, vol. 37(2), pages 587-603.
    13. Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    14. Spiliotis, Evangelos & Nikolopoulos, Konstantinos & Assimakopoulos, Vassilios, 2019. "Tales from tails: On the empirical distributions of forecasting errors and their implication to risk," International Journal of Forecasting, Elsevier, vol. 35(2), pages 687-698.
    15. Spiliotis, Evangelos & Kouloumos, Andreas & Assimakopoulos, Vassilios & Makridakis, Spyros, 2020. "Are forecasting competitions data representative of the reality?," International Journal of Forecasting, Elsevier, vol. 36(1), pages 37-53.
    16. Serin, Faruk & Alisan, Yigit & Kece, Adnan, 2021. "Hybrid time series forecasting methods for travel time prediction," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 579(C).
    17. Roberto Moro-Visconti & Salvador Cruz Rambaud & Joaquín López Pascual, 2023. "Artificial intelligence-driven scalability and its impact on the sustainability and valuation of traditional firms," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-14, December.
    18. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    19. Wesley Marcos Almeida & Claudimar Pereira Veiga, 2023. "Does demand forecasting matter to retailing?," Journal of Marketing Analytics, Palgrave Macmillan, vol. 11(2), pages 219-232, June.
    20. Bertrand, Jean-Louis & Brusset, Xavier & Fortin, Maxime, 2015. "Assessing and hedging the cost of unseasonal weather: Case of the apparel sector," European Journal of Operational Research, Elsevier, vol. 244(1), pages 261-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:342:y:2024:i:1:d:10.1007_s10479-024-05882-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.