IDEAS home Printed from https://ideas.repec.org/a/gam/jjrfmx/v14y2021i6p259-d570932.html
   My bibliography  Save this article

A Deep Learning Integrated Cairns-Blake-Dowd (CBD) Sytematic Mortality Risk Model

Author

Listed:
  • Joab Odhiambo

    (School of Mathematics, University of Nairobi, Nairobi City 30197-00100, Kenya)

  • Patrick Weke

    (School of Mathematics, University of Nairobi, Nairobi City 30197-00100, Kenya)

  • Philip Ngare

    (School of Mathematics, University of Nairobi, Nairobi City 30197-00100, Kenya)

Abstract

Many actuarial science researchers on stochastic modeling and forecasting of systematic mortality risk use Cairns-Blake-Dowd (CBD) Model (2006) due to its ability to consider the cohort effects. A three-factor stochastic mortality model has three parameters that describe the mortality trends over time when dealing with future behaviors. This study aims to predict the trends of the model, k t ( 2 ) by applying the Recurrent Neural Networks within a Short-Term Long Memory (an artificial LSTM architecture) compared to traditional statistical ARIMA (p,d,q) models. The novel deep learning (machine learning) technique helps integrate the CBD model to enhance its accuracy and predictive capacity for future systematic mortality risk in countries with limited data availability, such as Kenya. The results show that Long Short-Term Memory network architecture had higher levels of precision when predicting the future systematic mortality risks than traditional methods. Ultimately, the results can be implemented by Kenyan insurance firms when modeling and forecasting systematic mortality risk helpful in the pricing of Annuities and Assurances.

Suggested Citation

  • Joab Odhiambo & Patrick Weke & Philip Ngare, 2021. "A Deep Learning Integrated Cairns-Blake-Dowd (CBD) Sytematic Mortality Risk Model," JRFM, MDPI, vol. 14(6), pages 1-12, June.
  • Handle: RePEc:gam:jjrfmx:v:14:y:2021:i:6:p:259-:d:570932
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1911-8074/14/6/259/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1911-8074/14/6/259/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Epstein, David & Khalaf-Allah, Marwa, 2011. "Mortality density forecasts: An analysis of six stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 48(3), pages 355-367, May.
    2. Susanna Levantesi & Virginia Pizzorusso, 2019. "Application of Machine Learning to Mortality Modeling and Forecasting," Risks, MDPI, vol. 7(1), pages 1-19, February.
    3. Hainaut, Donatien, 2018. "A Neural-Network Analyzer for Mortality Forecast," LIDAM Reprints ISBA 2018027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Philippe Deprez & Pavel V. Shevchenko & Mario V. Wuthrich, 2017. "Machine Learning Techniques for Mortality Modeling," Papers 1705.03396, arXiv.org.
    5. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    6. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    7. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    8. Hainaut, Donatien, 2018. "A Neural-Network Analyzer For Mortality Forecast," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 481-508, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corsaro, Stefania & Marino, Zelda & Scognamiglio, Salvatore, 2024. "Quantile mortality modelling of multiple populations via neural networks," Insurance: Mathematics and Economics, Elsevier, vol. 116(C), pages 114-133.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    3. David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    4. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    5. Boumezoued, Alexandre & Elfassihi, Amal, 2021. "Mortality data correction in the absence of monthly fertility records," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 486-508.
    6. Alexandre Boumezoued & Amal Elfassihi, 2020. "Mortality data correction in the absence of monthly fertility records," Working Papers hal-02634631, HAL.
    7. Yang Qiao & Chou-Wen Wang & Wenjun Zhu, 2024. "Machine learning in long-term mortality forecasting," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 340-362, April.
    8. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    9. Susanna Levantesi & Virginia Pizzorusso, 2019. "Application of Machine Learning to Mortality Modeling and Forecasting," Risks, MDPI, vol. 7(1), pages 1-19, February.
    10. Jose Garrido & Yuxiang Shang & Ran Xu, 2024. "LSTM-Based Coherent Mortality Forecasting for Developing Countries," Risks, MDPI, vol. 12(2), pages 1-24, February.
    11. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    12. Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.
    13. Wan, Cheng & Bertschi, Ljudmila, 2015. "Swiss coherent mortality model as a basis for developing longevity de-risking solutions for Swiss pension funds: A practical approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 66-75.
    14. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    15. Karim Barigou & Stéphane Loisel & Yahia Salhi, 2020. "Parsimonious Predictive Mortality Modeling by Regularization and Cross-Validation with and without Covid-Type Effect," Risks, MDPI, vol. 9(1), pages 1-18, December.
    16. G'abor Petneh'azi & J'ozsef G'all, 2019. "Mortality rate forecasting: can recurrent neural networks beat the Lee-Carter model?," Papers 1909.05501, arXiv.org, revised Oct 2019.
    17. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    18. Li, Hong & Tan, Ken Seng & Tuljapurkar, Shripad & Zhu, Wenjun, 2021. "Gompertz law revisited: Forecasting mortality with a multi-factor exponential model," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 268-281.
    19. Helena Chuliá & Montserrat Guillén & Jorge M. Uribe, 2015. "Mortality and Longevity Risks in the United Kingdom: Dynamic Factor Models and Copula-Functions," Working Papers 2015-03, Universitat de Barcelona, UB Riskcenter.
    20. Broeders, Dirk & Mehlkopf, Roel & van Ool, Annick, 2021. "The economics of sharing macro-longevity risk," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 440-458.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjrfmx:v:14:y:2021:i:6:p:259-:d:570932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.