Dynamic Pricing of Electricity: A Survey of Related Research
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Rob J Hyndman & Shu Fan, 2008. "Density forecasting for long-term peak electricity demand," Monash Econometrics and Business Statistics Working Papers 6/08, Monash University, Department of Econometrics and Business Statistics.
- Wang, Jianzhou & Zhu, Wenjin & Zhang, Wenyu & Sun, Donghuai, 2009. "A trend fixed on firstly and seasonal adjustment model combined with the [epsilon]-SVR for short-term forecasting of electricity demand," Energy Policy, Elsevier, vol. 37(11), pages 4901-4909, November.
- Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
- Hyland, Marie & Leahy, Eimear & Tol, Richard S.J., 2013.
"The potential for segmentation of the retail market for electricity in Ireland,"
Energy Policy, Elsevier, vol. 61(C), pages 349-359.
- Hyland, Marie & Leahy, Eimear & Tol, Richard S. J., 2012. "The Potential for Segmentation of the Retail Market for Electricity in Ireland," Papers WP433, Economic and Social Research Institute (ESRI).
- Hyland, Marie & Leahy, Eimear & Tol, Richard S. J., 2013. "The Potential for Segmentation of the Retail Market for Electricity in Ireland," Papers RB2013/2/9, Economic and Social Research Institute (ESRI).
- Taylor, James W. & de Menezes, Lilian M. & McSharry, Patrick E., 2006. "A comparison of univariate methods for forecasting electricity demand up to a day ahead," International Journal of Forecasting, Elsevier, vol. 22(1), pages 1-16.
- Ozbafli, Aygul & Jenkins, Glenn P., 2016.
"Estimating the willingness to pay for reliable electricity supply: A choice experiment study,"
Energy Economics, Elsevier, vol. 56(C), pages 443-452.
- Aygul Ozbafli & Glenn Jenkins, 2013. "Estimating Willingness To Pay For Reliable Electricity Supply: A Choice Experiment Study," Development Discussion Papers 2013-01, JDI Executive Programs.
- Tiwari, Piyush, 2000. "Architectural, Demographic, and Economic Causes of Electricity Consumption in Bombay," Journal of Policy Modeling, Elsevier, vol. 22(1), pages 81-98, January.
- Gerpott, Torsten J. & Paukert, Mathias, 2013. "Determinants of willingness to pay for smart meters: An empirical analysis of household customers in Germany," Energy Policy, Elsevier, vol. 61(C), pages 483-495.
- J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
- Zhou, Shaojie & Teng, Fei, 2013. "Estimation of urban residential electricity demand in China using household survey data," Energy Policy, Elsevier, vol. 61(C), pages 394-402.
- Bose, Ranjan Kumar & Shukla, Megha, 1999. "Elasticities of electricity demand in India," Energy Policy, Elsevier, vol. 27(3), pages 137-146, March.
- Filippini, Massimo & Pachauri, Shonali, 2004.
"Elasticities of electricity demand in urban Indian households,"
Energy Policy, Elsevier, vol. 32(3), pages 429-436, February.
- Massimo Filippini & Shonali Pachauri, 2002. "Elasticities of Electricity Demand in Urban Indian Households," CEPE Working paper series 02-16, CEPE Center for Energy Policy and Economics, ETH Zurich.
- Akay, Diyar & Atak, Mehmet, 2007. "Grey prediction with rolling mechanism for electricity demand forecasting of Turkey," Energy, Elsevier, vol. 32(9), pages 1670-1675.
- Paul Simshauser and David Downer, 2016.
"On the Inequity of Flat-rate Electricity Tariffs,"
The Energy Journal, International Association for Energy Economics, vol. 0(Number 3).
- Paul Simshauser & David Downer, 2016. "On the Inequity of Flat-rate Electricity Tariffs," The Energy Journal, , vol. 37(3), pages 199-230, July.
- Desai, Kinnary R. & Dutta, Goutam, 2013. "A Dynamic Pricing Approach on Electricity Prices in Indian Context," IIMA Working Papers WP2013-12-07, Indian Institute of Management Ahmedabad, Research and Publication Department.
- Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "A trigonometric grey prediction approach to forecasting electricity demand," Energy, Elsevier, vol. 31(14), pages 2839-2847.
- Frank A. Wolak, 2011. "Do Residential Customers Respond to Hourly Prices? Evidence from a Dynamic Pricing Experiment," American Economic Review, American Economic Association, vol. 101(3), pages 83-87, May.
- Mirasgedis, S. & Sarafidis, Y. & Georgopoulou, E. & Lalas, D.P. & Moschovits, M. & Karagiannis, F. & Papakonstantinou, D., 2006. "Models for mid-term electricity demand forecasting incorporating weather influences," Energy, Elsevier, vol. 31(2), pages 208-227.
- Ahmad Faruqui, Sanem Sergici, and Lamine Akaba, 2014. "The Impact of Dynamic Pricing on Residential and Small Commercial and Industrial Usage: New Experimental Evidence from Connecticut," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salem, Mohammed Z. & Ertz, Myriam & Sarigӧllü, Emine, 2021. "Demarketing strategies to rationalize electricity consumption in the Gaza Strip-Palestine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
- Robert Thomas, Daniel & Agrawal, Shalu & Harish, S.P. & Mahajan, Aseem & Urpelainen, Johannes, 2020. "Understanding segmentation in rural electricity markets: Evidence from India," Energy Economics, Elsevier, vol. 87(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Goutam Dutta & Krishnendranath Mitra, 2017. "A literature review on dynamic pricing of electricity," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(10), pages 1131-1145, October.
- Krishnendranath Mitra & Goutam Dutta, 2021. "A novel method of market segmentation and market study for dynamic pricing of retail electricity in India: an experimental approach in a university setup," Journal of Revenue and Pricing Management, Palgrave Macmillan, vol. 20(2), pages 162-184, April.
- Ahmed Ismail & Mustafa Baysal, 2023. "Dynamic Pricing Based on Demand Response Using Actor–Critic Agent Reinforcement Learning," Energies, MDPI, vol. 16(14), pages 1-19, July.
- Mitra, Krishnendranath & Dutta, Goutam, 2018. "Study of Retail Electricity Consumers’ Response and Perception Regarding Electricity Consumption," IIMA Working Papers WP 2018-10-02, Indian Institute of Management Ahmedabad, Research and Publication Department.
- Aftab Ahmed Almani & Xueshan Han, 2023. "Real-Time Pricing-Enabled Demand Response Using Long Short-Time Memory Deep Learning," Energies, MDPI, vol. 16(5), pages 1-13, March.
- Weide Li & Demeng Kong & Jinran Wu, 2017. "A Novel Hybrid Model Based on Extreme Learning Machine, k-Nearest Neighbor Regression and Wavelet Denoising Applied to Short-Term Electric Load Forecasting," Energies, MDPI, vol. 10(5), pages 1-16, May.
- Wang, Shuai & Yu, Lean & Tang, Ling & Wang, Shouyang, 2011. "A novel seasonal decomposition based least squares support vector regression ensemble learning approach for hydropower consumption forecasting in China," Energy, Elsevier, vol. 36(11), pages 6542-6554.
- Tanrisever, Fehmi & Derinkuyu, Kursad & Heeren, Michael, 2013. "Forecasting electricity infeed for distribution system networks: An analysis of the Dutch case," Energy, Elsevier, vol. 58(C), pages 247-257.
- Zhu, Suling & Wang, Jianzhou & Zhao, Weigang & Wang, Jujie, 2011. "A seasonal hybrid procedure for electricity demand forecasting in China," Applied Energy, Elsevier, vol. 88(11), pages 3807-3815.
- Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
- Suganthi, L. & Samuel, Anand A., 2012. "Energy models for demand forecasting—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1223-1240.
- AL-Musaylh, Mohanad S. & Deo, Ravinesh C. & Adamowski, Jan F. & Li, Yan, 2019. "Short-term electricity demand forecasting using machine learning methods enriched with ground-based climate and ECMWF Reanalysis atmospheric predictors in southeast Queensland, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
- Debnath, Kumar Biswajit & Mourshed, Monjur, 2018. "Forecasting methods in energy planning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 88(C), pages 297-325.
- Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
- Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
- Rendon-Sanchez, Juan F. & de Menezes, Lilian M., 2019. "Structural combination of seasonal exponential smoothing forecasts applied to load forecasting," European Journal of Operational Research, Elsevier, vol. 275(3), pages 916-924.
- Chabouni, Naima & Belarbi, Yacine & Benhassine, Wassim, 2020. "Electricity load dynamics, temperature and seasonality Nexus in Algeria," Energy, Elsevier, vol. 200(C).
- Huntington, Hillard G. & Barrios, James J. & Arora, Vipin, 2019.
"Review of key international demand elasticities for major industrializing economies,"
Energy Policy, Elsevier, vol. 133(C).
- Huntington, Hillard & Barrios, James & Arora, Vipin, 2017. "Review of Key International Demand Elasticities for Major Industrializing Economies," MPRA Paper 95890, University Library of Munich, Germany, revised Aug 2019.
- Huntington, Hillard & Barrios, James & Arora, Vipin, 2017. "Review of Key International Demand Elasticities for Major Industrializing Economies," MPRA Paper 87532, University Library of Munich, Germany.
- Janusz Sowinski, 2021. "The Impact of the Selection of Exogenous Variables in the ANFIS Model on the Results of the Daily Load Forecast in the Power Company," Energies, MDPI, vol. 14(2), pages 1-18, January.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ENE-2015-09-05 (Energy Economics)
- NEP-MKT-2015-09-05 (Marketing)
- NEP-REG-2015-09-05 (Regulation)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:iim:iimawp:13724. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: the person in charge (email available below). General contact details of provider: https://edirc.repec.org/data/eciimin.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.