A Green Energy Application in Energy Management Systems by an Artificial Intelligence-Based Solar Radiation Forecasting Model
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Mellit, A. & Benghanem, M. & Kalogirou, S.A., 2006. "An adaptive wavelet-network model for forecasting daily total solar-radiation," Applied Energy, Elsevier, vol. 83(7), pages 705-722, July.
- Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
- Li, Jiaming & Ward, John K. & Tong, Jingnan & Collins, Lyle & Platt, Glenn, 2016. "Machine learning for solar irradiance forecasting of photovoltaic system," Renewable Energy, Elsevier, vol. 90(C), pages 542-553.
- Dongxiao Niu & Shuyu Dai, 2017. "A Short-Term Load Forecasting Model with a Modified Particle Swarm Optimization Algorithm and Least Squares Support Vector Machine Based on the Denoising Method of Empirical Mode Decomposition and Gre," Energies, MDPI, vol. 10(3), pages 1-20, March.
- Voyant, Cyril & Paoli, Christophe & Muselli, Marc & Nivet, Marie-Laure, 2013. "Multi-horizon solar radiation forecasting for Mediterranean locations using time series models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 44-52.
- Deo, Ravinesh C. & Wen, Xiaohu & Qi, Feng, 2016. "A wavelet-coupled support vector machine model for forecasting global incident solar radiation using limited meteorological dataset," Applied Energy, Elsevier, vol. 168(C), pages 568-593.
- Chih-Chiang Wei, 2017. "Predictions of Surface Solar Radiation on Tilted Solar Panels using Machine Learning Models: A Case Study of Tainan City, Taiwan," Energies, MDPI, vol. 10(10), pages 1-26, October.
- Cheng, Hsu-Yung, 2016. "Hybrid solar irradiance now-casting by fusing Kalman filter and regressor," Renewable Energy, Elsevier, vol. 91(C), pages 434-441.
- Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
- Chen, S.X. & Gooi, H.B. & Wang, M.Q., 2013. "Solar radiation forecast based on fuzzy logic and neural networks," Renewable Energy, Elsevier, vol. 60(C), pages 195-201.
- Gharavi, H. & Ardehali, M.M. & Ghanbari-Tichi, S., 2015. "Imperial competitive algorithm optimization of fuzzy multi-objective design of a hybrid green power system with considerations for economics, reliability, and environmental emissions," Renewable Energy, Elsevier, vol. 78(C), pages 427-437.
- Luis Hernández & Carlos Baladrón & Javier M. Aguiar & Lorena Calavia & Belén Carro & Antonio Sánchez-Esguevillas & Javier Sanjuán & Álvaro González & Jaime Lloret, 2013. "Improved Short-Term Load Forecasting Based on Two-Stage Predictions with Artificial Neural Networks in a Microgrid Environment," Energies, MDPI, vol. 6(9), pages 1-19, August.
- Trapero, Juan R. & Kourentzes, Nikolaos & Martin, A., 2015. "Short-term solar irradiation forecasting based on Dynamic Harmonic Regression," Energy, Elsevier, vol. 84(C), pages 289-295.
- Cao, J.C. & Cao, S.H., 2006. "Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis," Energy, Elsevier, vol. 31(15), pages 3435-3445.
- Diagne, Maimouna & David, Mathieu & Lauret, Philippe & Boland, John & Schmutz, Nicolas, 2013. "Review of solar irradiance forecasting methods and a proposition for small-scale insular grids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 65-76.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Guoming Wang & Woo-Hyun Kim & Gyung-Suk Kil & Dae-Won Park & Sung-Wook Kim, 2019. "An Intelligent Lightning Warning System Based on Electromagnetic Field and Neural Network," Energies, MDPI, vol. 12(7), pages 1-11, April.
- Cheng, Hsu-Yung & Yu, Chih-Chang & Lin, Chih-Lung, 2021. "Day-ahead to week-ahead solar irradiance prediction using convolutional long short-term memory networks," Renewable Energy, Elsevier, vol. 179(C), pages 2300-2308.
- Faisal Khalil & Gordon Pipa, 2022. "Is Deep-Learning and Natural Language Processing Transcending the Financial Forecasting? Investigation Through Lens of News Analytic Process," Computational Economics, Springer;Society for Computational Economics, vol. 60(1), pages 147-171, June.
- Guangyi Wu & Xiangxin Shao & Hong Jiang & Shaoxin Chen & Yibing Zhou & Hongyang Xu, 2020. "Control Strategy of the Pumped Storage Unit to Deal with the Fluctuation of Wind and Photovoltaic Power in Microgrid," Energies, MDPI, vol. 13(2), pages 1-23, January.
- Jayesh Thaker & Robert Höller, 2022. "A Comparative Study of Time Series Forecasting of Solar Energy Based on Irradiance Classification," Energies, MDPI, vol. 15(8), pages 1-26, April.
- Aslam, Sheraz & Herodotou, Herodotos & Mohsin, Syed Muhammad & Javaid, Nadeem & Ashraf, Nouman & Aslam, Shahzad, 2021. "A survey on deep learning methods for power load and renewable energy forecasting in smart microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Si-Ya Wang & Jun Qiu & Fang-Fang Li, 2018. "Hybrid Decomposition-Reconfiguration Models for Long-Term Solar Radiation Prediction Only Using Historical Radiation Records," Energies, MDPI, vol. 11(6), pages 1-17, May.
- Xing Zhang & Zhuoqun Wei, 2019. "A Hybrid Model Based on Principal Component Analysis, Wavelet Transform, and Extreme Learning Machine Optimized by Bat Algorithm for Daily Solar Radiation Forecasting," Sustainability, MDPI, vol. 11(15), pages 1-20, July.
- Ahmed, Adil & Khalid, Muhammad, 2019. "A review on the selected applications of forecasting models in renewable power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 100(C), pages 9-21.
- Voyant, Cyril & Notton, Gilles & Kalogirou, Soteris & Nivet, Marie-Laure & Paoli, Christophe & Motte, Fabrice & Fouilloy, Alexis, 2017. "Machine learning methods for solar radiation forecasting: A review," Renewable Energy, Elsevier, vol. 105(C), pages 569-582.
- Michel Fliess & Cédric Join & Cyril Voyant, 2018. "Prediction bands for solar energy: New short-term time series forecasting techniques," Post-Print hal-01736518, HAL.
- Voyant, Cyril & Motte, Fabrice & Notton, Gilles & Fouilloy, Alexis & Nivet, Marie-Laure & Duchaud, Jean-Laurent, 2018. "Prediction intervals for global solar irradiation forecasting using regression trees methods," Renewable Energy, Elsevier, vol. 126(C), pages 332-340.
- Boland, John, 2015. "Spatial-temporal forecasting of solar radiation," Renewable Energy, Elsevier, vol. 75(C), pages 607-616.
- Marzouq, Manal & El Fadili, Hakim & Zenkouar, Khalid & Lakhliai, Zakia & Amouzg, Mohammed, 2020. "Short term solar irradiance forecasting via a novel evolutionary multi-model framework and performance assessment for sites with no solar irradiance data," Renewable Energy, Elsevier, vol. 157(C), pages 214-231.
- Jessica Wojtkiewicz & Matin Hosseini & Raju Gottumukkala & Terrence Lynn Chambers, 2019. "Hour-Ahead Solar Irradiance Forecasting Using Multivariate Gated Recurrent Units," Energies, MDPI, vol. 12(21), pages 1-13, October.
- John Boland, 2020. "Characterising Seasonality of Solar Radiation and Solar Farm Output," Energies, MDPI, vol. 13(2), pages 1-15, January.
- Pedregal, Diego J. & Trapero, Juan R., 2021. "Adjusted combination of moving averages: A forecasting system for medium-term solar irradiance," Applied Energy, Elsevier, vol. 298(C).
- Gabriel Mendonça de Paiva & Sergio Pires Pimentel & Bernardo Pinheiro Alvarenga & Enes Gonçalves Marra & Marco Mussetta & Sonia Leva, 2020. "Multiple Site Intraday Solar Irradiance Forecasting by Machine Learning Algorithms: MGGP and MLP Neural Networks," Energies, MDPI, vol. 13(11), pages 1-28, June.
- Alonso-Suárez, R. & David, M. & Branco, V. & Lauret, P., 2020. "Intra-day solar probabilistic forecasts including local short-term variability and satellite information," Renewable Energy, Elsevier, vol. 158(C), pages 554-573.
- Elham Alzain & Shaha Al-Otaibi & Theyazn H. H. Aldhyani & Ali Saleh Alshebami & Mohammed Amin Almaiah & Mukti E. Jadhav, 2023. "Revolutionizing Solar Power Production with Artificial Intelligence: A Sustainable Predictive Model," Sustainability, MDPI, vol. 15(10), pages 1-21, May.
- Anh Ngoc-Lan Huynh & Ravinesh C. Deo & Duc-Anh An-Vo & Mumtaz Ali & Nawin Raj & Shahab Abdulla, 2020. "Near Real-Time Global Solar Radiation Forecasting at Multiple Time-Step Horizons Using the Long Short-Term Memory Network," Energies, MDPI, vol. 13(14), pages 1-30, July.
- Gairaa, Kacem & Khellaf, Abdallah & Messlem, Youcef & Chellali, Farouk, 2016. "Estimation of the daily global solar radiation based on Box–Jenkins and ANN models: A combined approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 238-249.
- Hanany Tolba & Nouha Dkhili & Julien Nou & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2020. "Multi-Horizon Forecasting of Global Horizontal Irradiance Using Online Gaussian Process Regression: A Kernel Study," Energies, MDPI, vol. 13(16), pages 1-23, August.
- Samu, Remember & Calais, Martina & Shafiullah, G.M. & Moghbel, Moayed & Shoeb, Md Asaduzzaman & Nouri, Bijan & Blum, Niklas, 2021. "Applications for solar irradiance nowcasting in the control of microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
- Heng, Jiani & Wang, Jianzhou & Xiao, Liye & Lu, Haiyan, 2017. "Research and application of a combined model based on frequent pattern growth algorithm and multi-objective optimization for solar radiation forecasting," Applied Energy, Elsevier, vol. 208(C), pages 845-866.
- Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
More about this item
Keywords
green energy; energy technology; artificial intelligence; solar energy; solar radiation; forecasting; deep convolutional neural networks;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:4:p:819-:d:139251. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.