Can Machine Learning Catch the COVID-19 Recession?
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Goulet Coulombe, Philippe & Marcellino, Massimiliano & Stevanović, Dalibor, 2021. "Can Machine Learning Catch The Covid-19 Recession?," National Institute Economic Review, National Institute of Economic and Social Research, vol. 256, pages 71-109, May.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," Working Papers 21-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Philippe Goulet Coulombe & Massimiliano Marcellino & Dalibor Stevanovic, 2021. "Can Machine Learning Catch the COVID-19 Recession?," CIRANO Working Papers 2021s-09, CIRANO.
- Marcellino, Massimiliano & Stevanovic, Dalibor & Goulet Coulombe, Philippe, 2021. "Can Machine Learning Catch the COVID-19 Recession?," CEPR Discussion Papers 15867, C.E.P.R. Discussion Papers.
References listed on IDEAS
- Marta Banbura & Domenico Giannone & Lucrezia Reichlin, 2010.
"Large Bayesian vector auto regressions,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(1), pages 71-92.
- Reichlin, Lucrezia & Giannone, Domenico & Banbura, Marta, 2007. "Bayesian VARs with Large Panels," CEPR Discussion Papers 6326, C.E.P.R. Discussion Papers.
- Martha Banbura & Domenico Giannone & Lucrezia Reichlin, 2008. "Large Bayesian VARs," Working Papers ECARES 2008_033, ULB -- Universite Libre de Bruxelles.
- Giannone, Domenico & Reichlin, Lucrezia & Bańbura, Marta, 2008. "Large Bayesian VARs," Working Paper Series 966, European Central Bank.
- Marta Bańbura, 2008. "Large Bayesian VARs," 2008 Meeting Papers 334, Society for Economic Dynamics.
- Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
- Jushan Bai & Serena Ng, 2002.
"Determining the Number of Factors in Approximate Factor Models,"
Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Econometric Society World Congress 2000 Contributed Papers 1504, Econometric Society.
- Jushan Bai & Serena Ng, 2000. "Determining the Number of Factors in Approximate Factor Models," Boston College Working Papers in Economics 440, Boston College Department of Economics.
- Boriss Siliverstovs & Daniel Wochner, 2019.
"Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data,"
KOF Working papers
19-463, KOF Swiss Economic Institute, ETH Zurich.
- Boriss Siliverstovs & Daniel Wochner, 2020. "Recessions as Breadwinner for Forecasters State-Dependent Evaluation of Predictive Ability: Evidence from Big Macroeconomic US Data," Working Papers 2020/02, Latvijas Banka.
- Alessi, Lucia & Barigozzi, Matteo & Capasso, Marco, 2010. "Improved penalization for determining the number of factors in approximate factor models," Statistics & Probability Letters, Elsevier, vol. 80(23-24), pages 1806-1813, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zhang, Qin & Ni, He & Xu, Hao, 2023. "Nowcasting Chinese GDP in a data-rich environment: Lessons from machine learning algorithms," Economic Modelling, Elsevier, vol. 122(C).
- Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021.
"Macroeconomic data transformations matter,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "Macroeconomic Data Transformations Matter," Working Papers 20-17, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Mar 2021.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2020. "Macroeconomic Data Transformations Matter," CIRANO Working Papers 2020s-42, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "Macroeconomic Data Transformations Matter," Papers 2008.01714, arXiv.org, revised Mar 2021.
- Byron Botha & Rulof Burger & Kevin Kotzé & Neil Rankin & Daan Steenkamp, 2023.
"Big data forecasting of South African inflation,"
Empirical Economics, Springer, vol. 65(1), pages 149-188, July.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," ERSA Working Paper Series, Economic Research Southern Africa, vol. 0.
- Byron Botha & Rulof Burger & Kevin Kotz & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," Working Papers 11022, South African Reserve Bank.
- Byron Botha & Rulof Burger & Kevin Kotze & Neil Rankin & Daan Steenkamp, 2022. "Big data forecasting of South African inflation," School of Economics Macroeconomic Discussion Paper Series 2022-03, School of Economics, University of Cape Town.
- Longo, Luigi & Riccaboni, Massimo & Rungi, Armando, 2022.
"A neural network ensemble approach for GDP forecasting,"
Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
- Luigi Longo & Massimo Riccaboni & Armando Rungi, 2021. "A Neural Network Ensemble Approach for GDP Forecasting," Working Papers 02/2021, IMT School for Advanced Studies Lucca, revised Mar 2021.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2023.
"Tail Forecasting With Multivariate Bayesian Additive Regression Trees,"
International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 979-1022, August.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino & Michael Pfarrhofer, 2021. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," Working Papers 21-08R, Federal Reserve Bank of Cleveland, revised 12 Jul 2022.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano & Pfarrhofer, Michael, 2022. "Tail Forecasting with Multivariate Bayesian Additive Regression Trees," CEPR Discussion Papers 17461, C.E.P.R. Discussion Papers.
- Philippe Goulet Coulombe, 2021. "To Bag is to Prune," Working Papers 21-03, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Jun 2021.
- Philippe Goulet Coulombe, 2021. "Slow-Growing Trees," Papers 2103.01926, arXiv.org, revised Jul 2021.
- Paul Ho, 2021. "Forecasting in the Absence of Precedent," Working Paper 21-10, Federal Reserve Bank of Richmond.
- James T. E. Chapman & Ajit Desai, 2023.
"Macroeconomic Predictions Using Payments Data and Machine Learning,"
Forecasting, MDPI, vol. 5(4), pages 1-32, November.
- James Chapman & Ajit Desai, 2022. "Macroeconomic Predictions Using Payments Data and Machine Learning," Staff Working Papers 22-10, Bank of Canada.
- James T. E. Chapman & Ajit Desai, 2022. "Macroeconomic Predictions using Payments Data and Machine Learning," Papers 2209.00948, arXiv.org.
- Hauzenberger, Niko & Huber, Florian & Klieber, Karin, 2023.
"Real-time inflation forecasting using non-linear dimension reduction techniques,"
International Journal of Forecasting, Elsevier, vol. 39(2), pages 901-921.
- Niko Hauzenberger & Florian Huber & Karin Klieber, 2020. "Real-time Inflation Forecasting Using Non-linear Dimension Reduction Techniques," Papers 2012.08155, arXiv.org, revised Dec 2021.
- Philippe Goulet Coulombe, 2021. "Slow-Growing Trees," Working Papers 21-02, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management.
- Ying Lun Cheung, 2024. "Identification of Time-Varying Factor Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(1), pages 76-94, January.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022.
"Forecasting US Inflation Using Bayesian Nonparametric Models,"
Papers
2202.13793, arXiv.org.
- Todd E. Clark & Florian Huber & Gary Koop & Massimiliano Marcellino, 2022. "Forecasting US Inflation Using Bayesian Nonparametric Models," Working Papers 22-05, Federal Reserve Bank of Cleveland.
- Clark, Todd & Huber, Florian & Koop, Gary & Marcellino, Massimiliano, 2023. "Forecasting US Inflation Using Bayesian Nonparametric Models," CEPR Discussion Papers 18244, C.E.P.R. Discussion Papers.
- Michael Zhemkov, 2021.
"Nowcasting Russian GDP using forecast combination approach,"
International Economics, CEPII research center, issue 168, pages 10-24.
- Zhemkov, Michael, 2021. "Nowcasting Russian GDP using forecast combination approach," International Economics, Elsevier, vol. 168(C), pages 10-24.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Smeekes, Stephan & Wijler, Etienne, 2018.
"Macroeconomic forecasting using penalized regression methods,"
International Journal of Forecasting, Elsevier, vol. 34(3), pages 408-430.
- Smeekes, Stephan & Wijler, Etiënne, 2016. "Macroeconomic Forecasting Using Penalized Regression Methods," Research Memorandum 039, Maastricht University, Graduate School of Business and Economics (GSBE).
- Paolo Andreini & Donato Ceci, 2019. "A Horse Race in High Dimensional Space," CEIS Research Paper 452, Tor Vergata University, CEIS, revised 14 Feb 2019.
- Matteo Luciani, 2015.
"Monetary Policy and the Housing Market: A Structural Factor Analysis,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 30(2), pages 199-218, March.
- Matteo LUCIANI, "undated". "Monetary Policy and the Housing Market: A Structural Factor Analysis," Working Papers wp2010-7, Department of the Treasury, Ministry of the Economy and of Finance.
- Matteo Luciani, 2012. "Monetary Policy and the Housing Market: A Structural Factor Analysis," Working Papers ECARES ECARES 2012-035, ULB -- Universite Libre de Bruxelles.
- Matteo Luciani, 2013. "Monetary Policy, and the Housing Market: A Structural Factor Analysis," ULB Institutional Repository 2013/153324, ULB -- Universite Libre de Bruxelles.
- Lombardi, Marco J. & Maier, Philipp, 2011. "Forecasting economic growth in the euro area during the Great Moderation and the Great Recession," Working Paper Series 1379, European Central Bank.
- Igan, Deniz & Kabundi, Alain & De Simone, Francisco Nadal & Tamirisa, Natalia, 2017.
"Monetary policy and balance sheets,"
Journal of Policy Modeling, Elsevier, vol. 39(1), pages 169-184.
- Ms. Deniz O Igan & Alain N. Kabundi & Mr. Francisco d Nadal De Simone & Ms. Natalia T. Tamirisa, 2013. "Monetary Policy and Balance Sheets," IMF Working Papers 2013/158, International Monetary Fund.
- Paolo Andreini & Cosimo Izzo & Giovanni Ricco, 2020.
"Deep Dynamic Factor Models,"
Papers
2007.11887, arXiv.org, revised May 2023.
- Paolo Andreini & Cosimo Izzo & Giovanni Ricco, 2023. "Deep Dynamic Factor Models," Working Papers 2023-08, Center for Research in Economics and Statistics.
- Nathan Bedock & Dalibor Stevanovic, 2017.
"An empirical study of credit shock transmission in a small open economy,"
Canadian Journal of Economics, Canadian Economics Association, vol. 50(2), pages 541-570, May.
- Nathan Bedock & Dalibor Stevanović, 2017. "An empirical study of credit shock transmission in a small open economy," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 50(2), pages 541-570, May.
- Nathan Bedock & Dalibor Stevanovic, 2012. "An Empirical Study of Credit Shock Transmission in a Small Open Economy," CIRANO Working Papers 2012s-16, CIRANO.
- Franz Ruch & Mehmet Balcilar & Rangan Gupta & Mampho P. Modise, 2020.
"Forecasting core inflation: the case of South Africa,"
Applied Economics, Taylor & Francis Journals, vol. 52(28), pages 3004-3022, June.
- Franz Ruch & Mehmet Balcilar Author-Name-First Mehmet & Mampho P. Modise & Rangan Gupta, 2015. "Forecasting Core Inflation: The Case of South Africa," Working Papers 15-08, Eastern Mediterranean University, Department of Economics.
- Franz Ruch & Mehmet Balcilar & Mampho P. Modise & Rangan Gupta, 2015. "Forecasting Core Inflation: The Case of South Africa," Working Papers 201543, University of Pretoria, Department of Economics.
- Alain Kabundi & Elmarie Nel & Franz Ruch, 2016. "Nowcasting Real GDP growth in South Africa," Working Papers 7068, South African Reserve Bank.
- Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2014.
"Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?,"
Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(5), pages 693-714, October.
- Barigozzi, Matteo & Conti, Antonio & Luciani, Matteo, 2012. "Do Euro area countries respond asymmetrically to the common monetary policy?," LSE Research Online Documents on Economics 43344, London School of Economics and Political Science, LSE Library.
- Matteo Barigozzi & Antonio M. Conti & Matteo Luciani, 2013. "Do euro area countries respond asymmetrically to the common monetary policy?," Temi di discussione (Economic working papers) 923, Bank of Italy, Economic Research and International Relations Area.
- Matteo Luciani & Antoniomaria Conti & Matteo Barigozzi, 2013. "Do Euro Area Countries Respond Asymmetrically to the Common Monetary Policy?," ULB Institutional Repository 2013/153330, ULB -- Universite Libre de Bruxelles.
- Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2016.
"Forecasting US real private residential fixed investment using a large number of predictors,"
Empirical Economics, Springer, vol. 51(4), pages 1557-1580, December.
- Goodness C. Aye & Stephen M. Miller & Rangan Gupta & Mehmet Balcilar, 2013. "Forecasting the US Real Private Residential Fixed Investment Using Large Number of Predictors," Working Papers 201348, University of Pretoria, Department of Economics.
- Goodness C. Aye & Rangan Gupta & Stephen M. Miller & Mehmet Balcilar, 2014. "Forecasting US Real Private Residential Fixed Investment Using a Large Number of Predictors," Working papers 2014-10, University of Connecticut, Department of Economics.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022.
"How is machine learning useful for macroeconomic forecasting?,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2019. "How is Machine Learning Useful for Macroeconomic Forecasting?," CIRANO Working Papers 2019s-22, CIRANO.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Working Papers 20-01, Chair in macroeconomics and forecasting, University of Quebec in Montreal's School of Management, revised Aug 2020.
- Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & St'ephane Surprenant, 2020. "How is Machine Learning Useful for Macroeconomic Forecasting?," Papers 2008.12477, arXiv.org.
- Panagiotidis, Theodore & Printzis, Panagiotis, 2020.
"What is the investment loss due to uncertainty?,"
Global Finance Journal, Elsevier, vol. 45(C).
- Theodore Panagiotidis & Panagiotis Printzis, 2019. "What is the Investment Loss due to Uncertainty?," Working Paper series 19-06, Rimini Centre for Economic Analysis.
- Theodore Panagiotidis & Panagiotis Printzis, 2019. "What is the Investment Loss due to Uncertainty?," GreeSE – Hellenic Observatory Papers on Greece and Southeast Europe 138, Hellenic Observatory, LSE.
- Panagiotidis, Theodore & Printzis, Panagiotis, 2019. "What is the investment loss due to uncertainty?," LSE Research Online Documents on Economics 102648, London School of Economics and Political Science, LSE Library.
- Theodore Panagiotidis & Panagiotis Printzis, 2019. "What is the Investment Loss due to Uncertainty?," Working Papers 383, Leibniz Institut für Ost- und Südosteuropaforschung (Institute for East and Southeast European Studies).
- Rangan Gupta & Alain Kabundi & Stephen Miller & Josine Uwilingiye, 2014.
"Using large data sets to forecast sectoral employment,"
Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 23(2), pages 229-264, June.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 201101, University of Pretoria, Department of Economics.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working papers 2011-02, University of Connecticut, Department of Economics, revised Aug 2012.
- Rangan Gupta & Alain Kabundi & Stephen M. Miller & Josine Uwilingiye, 2011. "Using Large Data Sets to Forecast Sectoral Employment," Working Papers 1106, University of Nevada, Las Vegas , Department of Economics.
- Kastner, Gregor, 2019.
"Sparse Bayesian time-varying covariance estimation in many dimensions,"
Journal of Econometrics, Elsevier, vol. 210(1), pages 98-115.
- Gregor Kastner, 2016. "Sparse Bayesian time-varying covariance estimation in many dimensions," Papers 1608.08468, arXiv.org, revised Nov 2017.
- Massacci, Daniele, 2017. "Least squares estimation of large dimensional threshold factor models," Journal of Econometrics, Elsevier, vol. 197(1), pages 101-129.
- Pellényi, Gábor, 2012. "A monetáris politika hatása a magyar gazdaságra. Elemzés strukturális, dinamikus faktormodellel [The sectoral effects of monetary policy in Hungary: a structural factor]," Közgazdasági Szemle (Economic Review - monthly of the Hungarian Academy of Sciences), Közgazdasági Szemle Alapítvány (Economic Review Foundation), vol. 0(3), pages 263-284.
- Thomas Despois & Catherine Doz, 2022. "Identifying and interpreting the factors in factor models via sparsity : Different approaches," Working Papers halshs-03626503, HAL.
- Trucíos, Carlos & Mazzeu, João H.G. & Hotta, Luiz K. & Valls Pereira, Pedro L. & Hallin, Marc, 2021.
"Robustness and the general dynamic factor model with infinite-dimensional space: Identification, estimation, and forecasting,"
International Journal of Forecasting, Elsevier, vol. 37(4), pages 1520-1534.
- Trucíos Maza, Carlos César & Mazzeu, João H. G. & Hotta, Luiz Koodi & Pereira, Pedro L. Valls & Hallin, Marc, 2020. "Robustness and the general dynamic factor model with infinite-dimensional space: identification, estimation, and forecasting," Textos para discussão 521, FGV EESP - Escola de Economia de São Paulo, Fundação Getulio Vargas (Brazil).
- Matteo Barigozzi & Marc Hallin, 2023.
"Dynamic Factor Models: a Genealogy,"
Papers
2310.17278, arXiv.org, revised Jan 2024.
- Matteo Barigozzi & Marc Hallin, 2023. "Dynamic Factor Models: a Genealogy," Working Papers ECARES 2023-15, ULB -- Universite Libre de Bruxelles.
More about this item
JEL classification:
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
- C55 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Large Data Sets: Modeling and Analysis
- E37 - Macroeconomics and Monetary Economics - - Prices, Business Fluctuations, and Cycles - - - Forecasting and Simulation: Models and Applications
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2021-03-15 (Big Data)
- NEP-CMP-2021-03-15 (Computational Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2103.01201. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.