Deep Learning for Demand Forecasting in the Fashion and Apparel Retail Industry
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Thomassey, Sébastien, 2010. "Sales forecasts in clothing industry: The key success factor of the supply chain management," International Journal of Production Economics, Elsevier, vol. 128(2), pages 470-483, December.
- Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
- Wong, W.K. & Guo, Z.X., 2010. "A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm," International Journal of Production Economics, Elsevier, vol. 128(2), pages 614-624, December.
- Xu, Shuojiang & Chan, Hing Kai & Zhang, Tiantian, 2019. "Forecasting the demand of the aviation industry using hybrid time series SARIMA-SVR approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 122(C), pages 169-180.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Md. Iftekharul Alam Efat & Petr Hajek & Mohammad Zoynul Abedin & Rahat Uddin Azad & Md. Al Jaber & Shuvra Aditya & Mohammad Kabir Hassan, 2024. "Deep-learning model using hybrid adaptive trend estimated series for modelling and forecasting sales," Annals of Operations Research, Springer, vol. 339(1), pages 297-328, August.
- Wong, W.K. & Guo, Z.X., 2010. "A hybrid intelligent model for medium-term sales forecasting in fashion retail supply chains using extreme learning machine and harmony search algorithm," International Journal of Production Economics, Elsevier, vol. 128(2), pages 614-624, December.
- NJ Matsoma & IM Ambe, 2016. "Factors Affecting Demand Planning in the South African Clothing Industry," Journal of Economics and Behavioral Studies, AMH International, vol. 8(5), pages 194-210.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Majd Kharfan & Vicky Wing Kei Chan & Tugba Firdolas Efendigil, 2021. "A data-driven forecasting approach for newly launched seasonal products by leveraging machine-learning approaches," Annals of Operations Research, Springer, vol. 303(1), pages 159-174, August.
- Claudio Felisoni de Angelo & Ronaldo Zwicker & Nuno Manoel Martins Dias Fouto & Marcos Roberto Luppe, 2011. "Temporal series and neural networks: a comparative analysis of techniques in the Brazilian retail sales forecast," Brazilian Business Review, Fucape Business School, vol. 8(2), pages 01-21, April.
- Giovanni Battista Gardino & Rosa Meo & Giuseppe Craparotta, 0. "Multi-view Latent Learning Applied to Fashion Industry," Information Systems Frontiers, Springer, vol. 0, pages 1-17.
- Giovanni Battista Gardino & Rosa Meo & Giuseppe Craparotta, 2021. "Multi-view Latent Learning Applied to Fashion Industry," Information Systems Frontiers, Springer, vol. 23(1), pages 53-69, February.
- Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
- Hayashi, Masayoshi, 2014.
"Forecasting welfare caseloads: The case of the Japanese public assistance program,"
Socio-Economic Planning Sciences, Elsevier, vol. 48(2), pages 105-114.
- Masayoshi Hayashi, 2012. "Forecasting Welfare Caseloads: The Case of the Japanese Public Assistance Program," CIRJE F-Series CIRJE-F-846, CIRJE, Faculty of Economics, University of Tokyo.
- Pakravan, Mohammad Reza & Kalashami, Mohammad Kavoosi, 2011. "Future prospects of Iran, U.S and Turkey's Pistachio exports," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 1(3), pages 1-8, September.
- OlaOluwa S. Yaya & Ahamuefula E. Ogbonna & Fumitaka Furuoka & Luis A. Gil‐Alana, 2021. "A New Unit Root Test for Unemployment Hysteresis Based on the Autoregressive Neural Network," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 83(4), pages 960-981, August.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Man Li & Tao Ye & Peijun Shi & Jian Fang, 2015. "Impacts of the global economic crisis and Tohoku earthquake on Sino–Japan trade: a comparative perspective," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 75(1), pages 541-556, January.
- Caglar, Abdullah Emre & Daştan, Muhammet & Avci, Salih Bortecine, 2024. "Persistence of disaggregate energy RD&D expenditures in top-five economies: Evidence from artificial neural network approach," Applied Energy, Elsevier, vol. 365(C).
- Maghsoodi, Abtin Ijadi, 2023. "Cryptocurrency portfolio allocation using a novel hybrid and predictive big data decision support system," Omega, Elsevier, vol. 115(C).
- Anna Staszewska-Bystrova & Peter Winker, 2016. "Improved bootstrap prediction intervals for SETAR models," Statistical Papers, Springer, vol. 57(1), pages 89-98, March.
- Bertrand, Jean-Louis & Brusset, Xavier & Fortin, Maxime, 2015.
"Assessing and hedging the cost of unseasonal weather: Case of the apparel sector,"
European Journal of Operational Research, Elsevier, vol. 244(1), pages 261-276.
- Xavier Brusset & Jean-Louis Bertrand & Maxime Fortin, 2015. "Assessing and hedging the cost of unseasonal weather: Case of the apparel sector," Post-Print hal-03414123, HAL.
- Aye, Goodness C. & Balcilar, Mehmet & Gupta, Rangan & Majumdar, Anandamayee, 2015.
"Forecasting aggregate retail sales: The case of South Africa,"
International Journal of Production Economics, Elsevier, vol. 160(C), pages 66-79.
- Goodness C. Aye & Mehmet Balcilar & Rangan Gupta & Anandamayee Majumdar, 2013. "Forecasting Aggregate Retail Sales: The Case of South Africa," Working Papers 201312, University of Pretoria, Department of Economics.
- Goodness C. Aye & Mehmet Balcilar Author-Name-First Mehmet & Rangan Gupta & Anandamayee Majumdar, 2014. "Forecasting Aggregate Retail Sales: The Case of South Africa," Working Papers 15-21, Eastern Mediterranean University, Department of Economics.
More about this item
Keywords
sales forecasting; deep learning; fashion and apparel industry; machine learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jforec:v:4:y:2022:i:2:p:31-581:d:843396. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.