IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2014-21.html
   My bibliography  Save this paper

A Model Validation Procedure

Author

Listed:
  • Julia Polak
  • Maxwell L. King
  • Xibin Zhang

Abstract

Statistical models can play a crucial role in decision making. Traditional model validation tests typically make restrictive parametric assumptions about the model under the null and the alternative hypotheses. The majority of these tests examine one type of change at a time. This paper presents a method for determining whether new data continues to support the chosen model. We suggest using simulation and the kernel density estimator instead of assuming a parametric distribution for the data under the hull hypothesis. This leads to a more versatile testing procedure, one that can be applied to test different types of models and look for a variety of different types of divergences from the null hypothesis. Such a flexible testing procedure, in some cases, can also replace a range of tests that each test against particular alternative hypotheses. The procedure’s ability to recognize a change in the underlying model is demonstrated through AR(1) and linear models. We examine the power of our procedure to detect changes in the variance of the error term and the AR coefficient in the AR(1) model. In the linear model, we examine the performance of the procedure when there are changes in the error variance and error distribution, and when an economic cycle is introduced into the model. We find that the procedure has correct empirical size and high power to recognize the changes in the data generating process after 10 to 15 new observations, depending on the type and extent of the change.

Suggested Citation

  • Julia Polak & Maxwell L. King & Xibin Zhang, 2014. "A Model Validation Procedure," Monash Econometrics and Business Statistics Working Papers 21/14, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2014-21
    as

    Download full text from publisher

    File URL: http://business.monash.edu/econometrics-and-business-statistics/research/publications/ebs/wp21-14.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Xibin & King, Maxwell L. & Hyndman, Rob J., 2006. "A Bayesian approach to bandwidth selection for multivariate kernel density estimation," Computational Statistics & Data Analysis, Elsevier, vol. 50(11), pages 3009-3031, July.
    2. Song Chen & Ingrid Van Keilegom, 2009. "A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 415-447, November.
    3. Chen, S. X., 1994. "Empirical Likelihood Confidence Intervals for Linear Regression Coefficients," Journal of Multivariate Analysis, Elsevier, vol. 49(1), pages 24-40, April.
    4. Diebold, Francis X. & Chen, Celia, 1996. "Testing structural stability with endogenous breakpoint A size comparison of analytic and bootstrap procedures," Journal of Econometrics, Elsevier, vol. 70(1), pages 221-241, January.
    5. Hansen, Bruce E, 1997. "Approximate Asymptotic P Values for Structural-Change Tests," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(1), pages 60-67, January.
    6. Andrews, Donald W K & Ploberger, Werner, 1994. "Optimal Tests When a Nuisance Parameter Is Present Only under the Alternative," Econometrica, Econometric Society, vol. 62(6), pages 1383-1414, November.
    7. Chen, S. X., 1994. "Comparing Empirical Likelihood and Bootstrap Hypothesis Tests," Journal of Multivariate Analysis, Elsevier, vol. 51(2), pages 277-293, November.
    8. Maxwell L. King & Xibin Zhang & Muhammad Akram, 2011. "A New Procedure For Multiple Testing Of Econometric Models," Monash Econometrics and Business Statistics Working Papers 7/11, Monash University, Department of Econometrics and Business Statistics.
    9. Gebrenegus Ghilagaber, 2004. "Another Look at Chow's Test for the Equality of Two Heteroscedastic Regression Models," Quality & Quantity: International Journal of Methodology, Springer, vol. 38(1), pages 81-93, February.
    10. Andrews, Donald W K, 1993. "Tests for Parameter Instability and Structural Change with Unknown Change Point," Econometrica, Econometric Society, vol. 61(4), pages 821-856, July.
    11. Gorr, Wilpen L. & Ord, J. Keith, 2009. "Introduction to time series monitoring," International Journal of Forecasting, Elsevier, vol. 25(3), pages 463-466, July.
    12. Song Chen & Ingrid Van Keilegom, 2009. "Rejoinder on: A review on empirical likelihood methods for regression," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 468-474, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sensier, M. & van Dijk, D.J.C., 2001. "Short-term volatility versus long-term growth: evidence in US macroeconomic time series," Econometric Institute Research Papers EI 2001-11, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    2. Gerard O'Reilly & Karl Whelan, 2005. "Has Euro-Area Inflation Persistence Changed Over Time?," The Review of Economics and Statistics, MIT Press, vol. 87(4), pages 709-720, November.
    3. Gagliardini, Patrick & Trojani, Fabio & Urga, Giovanni, 2005. "Robust GMM tests for structural breaks," Journal of Econometrics, Elsevier, vol. 129(1-2), pages 139-182.
    4. Makram El-Shagi & Sebastian Giesen, 2013. "Testing for Structural Breaks at Unknown Time: A Steeplechase," Computational Economics, Springer;Society for Computational Economics, vol. 41(1), pages 101-123, January.
    5. Jean-Yves Pitarakis, 2004. "Least squares estimation and tests of breaks in mean and variance under misspecification," Econometrics Journal, Royal Economic Society, vol. 7(1), pages 32-54, June.
    6. Ulrich Fritsche & Vladimir Kuzin, 2005. "Declining output volatility in Germany: impulses, propagation, and the role of monetary policy," Applied Economics, Taylor & Francis Journals, vol. 37(21), pages 2445-2457.
    7. Jamel Jouini, 2006. "Bootstrap Tests in Bivariate VAR Process with Single Structural Change : Power versus Corrected Size and Empirical Illustration," Working Papers halshs-00410759, HAL.
    8. James G. MacKinnon, 2007. "Bootstrap Hypothesis Testing," Working Paper 1127, Economics Department, Queen's University.
    9. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    10. Rebeca Jiménez-Rodríguez, 2004. "Oil Price Shocks: Testing for Non-linearity," CSEF Working Papers 115, Centre for Studies in Economics and Finance (CSEF), University of Naples, Italy.
    11. Thomas Paul & Thomas Walther & André Küster-Simic, 2022. "Empirical analysis of the illiquidity premia of German real estate securities," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(2), pages 203-260, June.
    12. Caraballo Pou, M. Angeles & Dabus, Carlos, 2008. "Nominal rigidities, skewness and inflation regimes," Research in Economics, Elsevier, vol. 62(1), pages 16-33, March.
    13. Ivan Mendieta-Muñoz, 2014. "Is there any relationship between the rates of interest and profit in the U.S. economy?," Studies in Economics 1416, School of Economics, University of Kent.
    14. Helmut Lütkepohl, 2013. "Vector autoregressive models," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 6, pages 139-164, Edward Elgar Publishing.
    15. Hartmann, Daniel & Kempa, Bernd & Pierdzioch, Christian, 2008. "Economic and financial crises and the predictability of U.S. stock returns," Journal of Empirical Finance, Elsevier, vol. 15(3), pages 468-480, June.
    16. D R Osborn & M Sensier, 2004. "Modelling UK Inflation: Persistence, Seasonality and Monetary Policy," Centre for Growth and Business Cycle Research Discussion Paper Series 46, Economics, The University of Manchester.
    17. Andersen, Torben G. & Varneskov, Rasmus T., 2022. "Testing for parameter instability and structural change in persistent predictive regressions," Journal of Econometrics, Elsevier, vol. 231(2), pages 361-386.
    18. Amr S. Hosny & N. Kundan Kishor & Mohsen Bahmani-Oskooee, 2015. "Understanding the dynamics of the macroeconomic trilemma," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(1), pages 32-64, January.
    19. van Dijk, D.J.C. & Osborn, D.R. & Sensier, M., 2002. "Changes in variability of the business cycle in the G7 countries," Econometric Institute Research Papers EI 2002-28, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    20. Ahmed Ali & Granberg Mark & Troster Victor & Uddin Gazi Salah, 2022. "Asymmetric dynamics between uncertainty and unemployment flows in the United States," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 26(1), pages 155-172, February.

    More about this item

    Keywords

    Chow test; model validation; p-value; multivariate kernel density estimation; structural break;
    All these keywords.

    JEL classification:

    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C52 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Evaluation, Validation, and Selection
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2014-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.