IDEAS home Printed from https://ideas.repec.org/p/pra/mprapa/119599.html
   My bibliography  Save this paper

Population projections using R, including graphical dynamic presentations

Author

Listed:
  • Flici, Farid

Abstract

Int his textbook,we are going to illustrate how to perform population projections using the Cohort Component Method using simple R functions and without using population projections specific Packages such as popdemo. We use the Algerian population data for ou rcase study. Then, we are going to show how to carry-out practical plots of population pyramid.

Suggested Citation

  • Flici, Farid, 2020. "Population projections using R, including graphical dynamic presentations," MPRA Paper 119599, University Library of Munich, Germany.
  • Handle: RePEc:pra:mprapa:119599
    as

    Download full text from publisher

    File URL: https://mpra.ub.uni-muenchen.de/119599/1/MPRA_paper_119599.pdf
    File Function: original version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    2. Lee, Ronald D., 1993. "Modeling and forecasting the time series of US fertility: Age distribution, range, and ultimate level," International Journal of Forecasting, Elsevier, vol. 9(2), pages 187-202, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Flici, Farid, 2020. "Muti-Scenarios Population Projection for Algeria using R," MPRA Paper 119600, University Library of Munich, Germany.
    2. Francesco Billari & Rebecca Graziani & Eugenio Melilli, 2014. "Stochastic Population Forecasting Based on Combinations of Expert Evaluations Within the Bayesian Paradigm," Demography, Springer;Population Association of America (PAA), vol. 51(5), pages 1933-1954, October.
    3. Vanella, Patrizio & Deschermeier, Philipp, 2018. "A Probabilistic Cohort-Component Model for Population Forecasting - The Case of Germany," Hannover Economic Papers (HEP) dp-638, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    4. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2020. "A more meaningful parameterization of the Lee–Carter model," Insurance: Mathematics and Economics, Elsevier, vol. 94(C), pages 1-8.
    5. Prskawetz, A. & Kogel, T. & Sanderson, W.C. & Scherbov, S., 2007. "The effects of age structure on economic growth: An application of probabilistic forecasting to India," International Journal of Forecasting, Elsevier, vol. 23(4), pages 587-602.
    6. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    7. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," BAFFI CAREFIN Working Papers 1505, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    8. Alan J. Auerbach & Ronald Lee, 2009. "Notional Defined Contribution Pension Systems in a Stochastic Context: Design and Stability," NBER Chapters, in: Social Security Policy in a Changing Environment, pages 43-68, National Bureau of Economic Research, Inc.
    9. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    10. Marie-Pier Bergeron-Boucher & Vladimir Canudas-Romo & James E. Oeppen & James W. Vaupel, 2017. "Coherent forecasts of mortality with compositional data analysis," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 37(17), pages 527-566.
    11. Feng, Lingbing & Shi, Yanlin & Chang, Le, 2021. "Forecasting mortality with a hyperbolic spatial temporal VAR model," International Journal of Forecasting, Elsevier, vol. 37(1), pages 255-273.
    12. Börsch-Supan, Axel, 2004. "Global Aging: Issues, Answers, More Questions," MEA discussion paper series 04055, Munich Center for the Economics of Aging (MEA) at the Max Planck Institute for Social Law and Social Policy.
    13. Auerbach, Alan J. & Lee, Ronald, 2011. "Welfare and generational equity in sustainable unfunded pension systems," Journal of Public Economics, Elsevier, vol. 95(1), pages 16-27.
    14. Tickle Leonie & Booth Heather, 2014. "The Longevity Prospects of Australian Seniors: An Evaluation of Forecast Method and Outcome," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 8(2), pages 259-292, July.
    15. Vanella, Patrizio, 2017. "Age- and Sex-Specific Fertility in Germany until the Year 2040 - The Impact of International Migration," Hannover Economic Papers (HEP) dp-606, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
    16. Yoichi Okita & Wade Pfau & Giang Long, 2011. "A Stochastic Forecast Model for Japan's Population," Japanese Economy, Taylor & Francis Journals, vol. 38(2), pages 19-44.
    17. Bernard Baffour & James Raymer, 2019. "Estimating multiregional survivorship probabilities for sparse data: An application to immigrant populations in Australia, 1981–2011," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 40(18), pages 463-502.
    18. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    19. Benjamin Seligman & Gabi Greenberg & Shripad Tuljapurkar, 2016. "Convergence in male and female life expectancy: Direction, age pattern, and causes," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 34(38), pages 1063-1074.
    20. Hans-Peter Kohler & José Antonio Ortega, 2002. "Tempo-Adjusted Period Parity Progression Measures, Fertility Postponement and Completed Cohort Fertility," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 6(6), pages 91-144.

    More about this item

    Keywords

    population projection; R; Algeria;
    All these keywords.

    JEL classification:

    • J11 - Labor and Demographic Economics - - Demographic Economics - - - Demographic Trends, Macroeconomic Effects, and Forecasts

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pra:mprapa:119599. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Joachim Winter (email available below). General contact details of provider: https://edirc.repec.org/data/vfmunde.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.