IDEAS home Printed from https://ideas.repec.org/a/spr/psycho/v87y2022i2d10.1007_s11336-021-09827-5.html
   My bibliography  Save this article

Two Filtering Methods of Forecasting Linear and Nonlinear Dynamics of Intensive Longitudinal Data

Author

Listed:
  • Michael D. Hunter

    (Pennsylvania State University)

  • Haya Fatimah

    (University of South Florida)

  • Marina A. Bornovalova

    (University of South Florida)

Abstract

With the advent of new data collection technologies, intensive longitudinal data (ILD) are collected more frequently than ever. Along with the increased prevalence of ILD, more methods are being developed to analyze these data. However, relatively few methods have yet been applied for making long- or even short-term predictions from ILD in behavioral settings. Applications of forecasting methods to behavioral ILD are still scant. We first establish a general framework for modeling ILD and then extend that frame to two previously existing forecasting methods: these methods are Kalman prediction and ensemble prediction. After implementing Kalman and ensemble forecasts in free and open-source software, we apply these methods to daily drug and alcohol use data. In doing so, we create a simple, but nonlinear dynamical system model of daily drug and alcohol use and illustrate important differences between the forecasting methods. We further compare the Kalman and ensemble forecasting methods to several simpler forecasts of daily drug and alcohol use. Ensemble forecasts may be more appropriate than Kalman forecasts for nonlinear dynamical systems models, but further forecasting evaluation methods must be put into practice.

Suggested Citation

  • Michael D. Hunter & Haya Fatimah & Marina A. Bornovalova, 2022. "Two Filtering Methods of Forecasting Linear and Nonlinear Dynamics of Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 477-505, June.
  • Handle: RePEc:spr:psycho:v:87:y:2022:i:2:d:10.1007_s11336-021-09827-5
    DOI: 10.1007/s11336-021-09827-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11336-021-09827-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11336-021-09827-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Durbin & S. J. Koopman, 2000. "Time series analysis of non‐Gaussian observations based on state space models from both classical and Bayesian perspectives," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 3-56.
    2. Peter M. Allen & Mark Strathern & James Baldwin, 2008. "Complexity: the Integrating Framework for Models of Urban and Regional Systems," Springer Books, in: Sergio Albeverio & Denise Andrey & Paolo Giordano & Alberto Vancheri (ed.), The Dynamics of Complex Urban Systems, pages 21-41, Springer.
    3. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    4. Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
    5. S. W. He & J. G. Wang, 1989. "On Embedding A Discrete‐Parameter Arma Model In A Continuous‐Parameter Arma Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 10(4), pages 315-323, July.
    6. Helske, Jouni, 2017. "KFAS: Exponential Family State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i10).
    7. Mandelbrot, Benoit B, 1971. "When Can Price Be Arbitraged Efficiently? A Limit to the Validity of the Random Walk and Martingale Models," The Review of Economics and Statistics, MIT Press, vol. 53(3), pages 225-236, August.
    8. Matthias Katzfuss & Jonathan R. Stroud & Christopher K. Wikle, 2016. "Understanding the Ensemble Kalman Filter," The American Statistician, Taylor & Francis Journals, vol. 70(4), pages 350-357, October.
    9. Bates, Douglas & Mächler, Martin & Bolker, Ben & Walker, Steve, 2015. "Fitting Linear Mixed-Effects Models Using lme4," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 67(i01).
    10. Bergmeir, Christoph & Costantini, Mauro & Benítez, José M., 2014. "On the usefulness of cross-validation for directional forecast evaluation," Computational Statistics & Data Analysis, Elsevier, vol. 76(C), pages 132-143.
    11. Durbin, James & Koopman, Siem Jan, 2012. "Time Series Analysis by State Space Methods," OUP Catalogue, Oxford University Press, edition 2, number 9780199641178.
    12. K. S. Chan & H. Tong, 1987. "A Note On Embedding A Discrete Parameter Arma Model In A Continuous Parameter Arma Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(3), pages 277-281, May.
    13. Daniel Culbertson & Tara Sinclair, 2014. "The Failure of Forecasts in the Great Recession," Challenge, Taylor & Francis Journals, vol. 57(6), pages 34-45.
    14. Johan Oud & Robert Jansen, 2000. "Continuous time state space modeling of panel data by means of sem," Psychometrika, Springer;The Psychometric Society, vol. 65(2), pages 199-215, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter F. Halpin & Kathleen Gates & Siwei Liu, 2022. "Guest Editors’ Introduction to the Special Issue on Forecasting with Intensive Longitudinal Data," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 373-375, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shafiqah Azman & Dharini Pathmanathan & Aerambamoorthy Thavaneswaran, 2022. "Forecasting the Volatility of Cryptocurrencies in the Presence of COVID-19 with the State Space Model and Kalman Filter," Mathematics, MDPI, vol. 10(17), pages 1-15, September.
    2. Paolo Maranzano & Alessandro Fassò & Matteo Pelagatti & Manfred Mudelsee, 2020. "Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
    3. Ledenyov, Dimitri O. & Ledenyov, Viktor O., 2015. "Wave function method to forecast foreign currencies exchange rates at ultra high frequency electronic trading in foreign currencies exchange markets," MPRA Paper 67470, University Library of Munich, Germany.
    4. Filip Stanek, 2021. "Optimal Out-of-Sample Forecast Evaluation under Stationarity," CERGE-EI Working Papers wp712, The Center for Economic Research and Graduate Education - Economics Institute, Prague.
    5. Trond Husby & Hans Visser, 2021. "Short- to medium-run forecasting of mobility with dynamic linear models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(28), pages 871-902.
    6. Motta, Anderson C. O. & Hotta, Luiz K., 2003. "Exact Maximum Likelihood and Bayesian Estimation of the Stochastic Volatility Model," Brazilian Review of Econometrics, Sociedade Brasileira de Econometria - SBE, vol. 23(2), November.
    7. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    8. Strickland, Chris M. & Martin, Gael M. & Forbes, Catherine S., 2008. "Parameterisation and efficient MCMC estimation of non-Gaussian state space models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2911-2930, February.
    9. Yanling Li & Zita Oravecz & Shuai Zhou & Yosef Bodovski & Ian J. Barnett & Guangqing Chi & Yuan Zhou & Naomi P. Friedman & Scott I. Vrieze & Sy-Miin Chow, 2022. "Bayesian Forecasting with a Regime-Switching Zero-Inflated Multilevel Poisson Regression Model: An Application to Adolescent Alcohol Use with Spatial Covariates," Psychometrika, Springer;The Psychometric Society, vol. 87(2), pages 376-402, June.
    10. Siem Jan Koopman & André Lucas & Marcel Scharth, 2016. "Predicting Time-Varying Parameters with Parameter-Driven and Observation-Driven Models," The Review of Economics and Statistics, MIT Press, vol. 98(1), pages 97-110, March.
    11. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    12. Alexander Tsyplakov, 2011. "An introduction to state space modeling (in Russian)," Quantile, Quantile, issue 9, pages 1-24, July.
    13. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    14. Georgia Koppe & Hazem Toutounji & Peter Kirsch & Stefanie Lis & Daniel Durstewitz, 2019. "Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-35, August.
    15. Koopman, Siem Jan & Jungbacker, Borus & Hol, Eugenie, 2005. "Forecasting daily variability of the S&P 100 stock index using historical, realised and implied volatility measurements," Journal of Empirical Finance, Elsevier, vol. 12(3), pages 445-475, June.
    16. Mesters, G. & Koopman, S.J., 2014. "Generalized dynamic panel data models with random effects for cross-section and time," Journal of Econometrics, Elsevier, vol. 180(2), pages 127-140.
    17. Hajar Hajmohammadi & Hamid Salehi, 2024. "The Impacts of COVID-19 Lockdowns on Road Transport Air Pollution in London: A State-Space Modelling Approach," IJERPH, MDPI, vol. 21(9), pages 1-12, August.
    18. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    19. Tommaso Proietti & Alessandra Luati, 2013. "Maximum likelihood estimation of time series models: the Kalman filter and beyond," Chapters, in: Nigar Hashimzade & Michael A. Thornton (ed.), Handbook of Research Methods and Applications in Empirical Macroeconomics, chapter 15, pages 334-362, Edward Elgar Publishing.
    20. repec:jss:jstsof:16:i01 is not listed on IDEAS
    21. Helske, Jouni, 2017. "KFAS: Exponential Family State Space Models in R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 78(i10).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:psycho:v:87:y:2022:i:2:d:10.1007_s11336-021-09827-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.