IDEAS home Printed from https://ideas.repec.org/a/eee/ecmode/v130y2024ics0264999323003991.html
   My bibliography  Save this article

The impact of joint events on oil price volatility: Evidence from a dynamic graphical news analysis model

Author

Listed:
  • Zhao, Lu-Tao
  • Wang, Dai-Song
  • Ren, Zhong-Yuan

Abstract

The analysis of event-oriented oil market risk deserves attention owing to the diversity, complexity and time variant of the oil-related events. From the aspect of oil price volatility, we examine the dynamic impact of joint events of different aspects on the oil market using graph analytical models and the proposed value-at-risk estimation approach. Based on the construction and evaluation of news indices, we confirm that events of six categories have strong short-term causality with oil price returns. Furthermore, we prove the capacity of event-oriented indices on oil market risk assessment tasks. Demand and energy-based events have shown their effect in improving oil market risk estimation, as proved by empirical analysis of assessing value-at-risk of Brent and WTI oil price. This paper confirms the impact of oil-related joint events on oil market risk and provides a new perspective of assessing latent oil market risks associated with exogenous events.

Suggested Citation

  • Zhao, Lu-Tao & Wang, Dai-Song & Ren, Zhong-Yuan, 2024. "The impact of joint events on oil price volatility: Evidence from a dynamic graphical news analysis model," Economic Modelling, Elsevier, vol. 130(C).
  • Handle: RePEc:eee:ecmode:v:130:y:2024:i:c:s0264999323003991
    DOI: 10.1016/j.econmod.2023.106587
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0264999323003991
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.econmod.2023.106587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    2. Niu, Zibo & Liu, Yuanyuan & Gao, Wang & Zhang, Hongwei, 2021. "The role of coronavirus news in the volatility forecasting of crude oil futures markets: Evidence from China," Resources Policy, Elsevier, vol. 73(C).
    3. Ji, Qiang & Guo, Jian-Feng, 2015. "Oil price volatility and oil-related events: An Internet concern study perspective," Applied Energy, Elsevier, vol. 137(C), pages 256-264.
    4. Yao, Ting & Zhang, Yue-Jun & Ma, Chao-Qun, 2017. "How does investor attention affect international crude oil prices?," Applied Energy, Elsevier, vol. 205(C), pages 336-344.
    5. Paul H. Kupiec, 1995. "Techniques for verifying the accuracy of risk measurement models," Finance and Economics Discussion Series 95-24, Board of Governors of the Federal Reserve System (U.S.).
    6. Mbairadjim Moussa, A. & Sadefo Kamdem, J. & Terraza, M., 2014. "Fuzzy value-at-risk and expected shortfall for portfolios with heavy-tailed returns," Economic Modelling, Elsevier, vol. 39(C), pages 247-256.
    7. Yun Bai & Xixi Li & Hao Yu & Suling Jia, 2020. "Crude oil price forecasting incorporating news text," Papers 2002.02010, arXiv.org, revised Jul 2021.
    8. Weng, Futian & Zhang, Hongwei & Yang, Cai, 2021. "Volatility forecasting of crude oil futures based on a genetic algorithm regularization online extreme learning machine with a forgetting factor: The role of news during the COVID-19 pandemic," Resources Policy, Elsevier, vol. 73(C).
    9. Li, Xuerong & Shang, Wei & Wang, Shouyang, 2019. "Text-based crude oil price forecasting: A deep learning approach," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1548-1560.
    10. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Proceedings 512, Federal Reserve Bank of Chicago.
    11. Jia, Zhijie & Wen, Shiyan & Lin, Boqiang, 2021. "The effects and reacts of COVID-19 pandemic and international oil price on energy, economy, and environment in China," Applied Energy, Elsevier, vol. 302(C).
    12. Guo, Jian-Feng & Ji, Qiang, 2013. "How does market concern derived from the Internet affect oil prices?," Applied Energy, Elsevier, vol. 112(C), pages 1536-1543.
    13. Calomiris, Charles W. & Mamaysky, Harry, 2019. "How news and its context drive risk and returns around the world," Journal of Financial Economics, Elsevier, vol. 133(2), pages 299-336.
    14. Lucey, Brian & Ren, Boru, 2021. "Does news tone help forecast oil?," Economic Modelling, Elsevier, vol. 104(C).
    15. Miljkovic, Dragan & Goetz, Cole, 2020. "The effects of futures markets on oil spot price volatility in regional US markets," Applied Energy, Elsevier, vol. 273(C).
    16. Salisu, Afees A. & Gupta, Rangan & Ji, Qiang, 2022. "Forecasting oil prices over 150 years: The role of tail risks," Resources Policy, Elsevier, vol. 75(C).
    17. Noguera-Santaella, José, 2016. "Geopolitics and the oil price," Economic Modelling, Elsevier, vol. 52(PB), pages 301-309.
    18. Taylor, James W., 2020. "Forecast combinations for value at risk and expected shortfall," International Journal of Forecasting, Elsevier, vol. 36(2), pages 428-441.
    19. Xu, Yan & Wang, Xinyu & Liu, Hening, 2021. "Quantile-based GARCH-MIDAS: Estimating value-at-risk using mixed-frequency information," Finance Research Letters, Elsevier, vol. 43(C).
    20. Mensi, Walid & Hammoudeh, Shawkat & Yoon, Seong-Min, 2014. "How do OPEC news and structural breaks impact returns and volatility in crude oil markets? Further evidence from a long memory process," Energy Economics, Elsevier, vol. 42(C), pages 343-354.
    21. Patra, Saswat, 2021. "Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions," Energy Economics, Elsevier, vol. 101(C).
    22. David Cabedo, J. & Moya, Ismael, 2003. "Estimating oil price 'Value at Risk' using the historical simulation approach," Energy Economics, Elsevier, vol. 25(3), pages 239-253, May.
    23. Ju, Keyi & Su, Bin & Zhou, Dequn & Zhang, Yuqiang, 2016. "An incentive-oriented early warning system for predicting the co-movements between oil price shocks and macroeconomy," Applied Energy, Elsevier, vol. 163(C), pages 452-463.
    24. Darryll Hendricks, 1996. "Evaluation of value-at-risk models using historical data," Economic Policy Review, Federal Reserve Bank of New York, vol. 2(Apr), pages 39-69.
    25. Schmidbauer, Harald & Rösch, Angi, 2012. "OPEC news announcements: Effects on oil price expectation and volatility," Energy Economics, Elsevier, vol. 34(5), pages 1656-1663.
    26. Tang, Ling & Zhang, Chengyuan & Li, Ling & Wang, Shouyang, 2020. "A multi-scale method for forecasting oil price with multi-factor search engine data," Applied Energy, Elsevier, vol. 257(C).
    27. Lux, Thomas & Segnon, Mawuli & Gupta, Rangan, 2016. "Forecasting crude oil price volatility and value-at-risk: Evidence from historical and recent data," Energy Economics, Elsevier, vol. 56(C), pages 117-133.
    28. Du, Limin & Yanan, He & Wei, Chu, 2010. "The relationship between oil price shocks and China's macro-economy: An empirical analysis," Energy Policy, Elsevier, vol. 38(8), pages 4142-4151, August.
    29. Li, Yuze & Jiang, Shangrong & Li, Xuerong & Wang, Shouyang, 2021. "The role of news sentiment in oil futures returns and volatility forecasting: Data-decomposition based deep learning approach," Energy Economics, Elsevier, vol. 95(C).
    30. Nieto, Maria Rosa & Ruiz, Esther, 2016. "Frontiers in VaR forecasting and backtesting," International Journal of Forecasting, Elsevier, vol. 32(2), pages 475-501.
    31. Wen, Jun & Zhao, Xin-Xin & Chang, Chun-Ping, 2021. "The impact of extreme events on energy price risk," Energy Economics, Elsevier, vol. 99(C).
    32. Wang, Jue & Athanasopoulos, George & Hyndman, Rob J. & Wang, Shouyang, 2018. "Crude oil price forecasting based on internet concern using an extreme learning machine," International Journal of Forecasting, Elsevier, vol. 34(4), pages 665-677.
    33. Nonejad, Nima, 2022. "Forecasting crude oil price volatility out-of-sample using news-based geopolitical risk index: What forms of nonlinearity help improve forecast accuracy the most?," Finance Research Letters, Elsevier, vol. 46(PA).
    34. Ardia, David & Bluteau, Keven & Boudt, Kris, 2019. "Questioning the news about economic growth: Sparse forecasting using thousands of news-based sentiment values," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1370-1386.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu-Tao Zhao & Li-Na Liu & Zi-Jie Wang & Ling-Yun He, 2019. "Forecasting Oil Price Volatility in the Era of Big Data: A Text Mining for VaR Approach," Sustainability, MDPI, vol. 11(14), pages 1-20, July.
    2. Xiao, Jihong & Wen, Fenghua & He, Zhifang, 2023. "Impact of geopolitical risks on investor attention and speculation in the oil market: Evidence from nonlinear and time-varying analysis," Energy, Elsevier, vol. 267(C).
    3. Zhao, Geya & Xue, Minggao & Cheng, Li, 2023. "A new hybrid model for multi-step WTI futures price forecasting based on self-attention mechanism and spatial–temporal graph neural network," Resources Policy, Elsevier, vol. 85(PB).
    4. Li Jingjing & Tang Ling & Li Ling, 2020. "The Co-Movements Between Crude Oil Price and Internet Concerns: Causality Analysis in the Frequency Domain," Journal of Systems Science and Information, De Gruyter, vol. 8(3), pages 224-239, June.
    5. Tang, Ling & Zhang, Chengyuan & Li, Ling & Wang, Shouyang, 2020. "A multi-scale method for forecasting oil price with multi-factor search engine data," Applied Energy, Elsevier, vol. 257(C).
    6. Jiang, He & Hu, Weiqiang & Xiao, Ling & Dong, Yao, 2022. "A decomposition ensemble based deep learning approach for crude oil price forecasting," Resources Policy, Elsevier, vol. 78(C).
    7. Patra, Saswat, 2021. "Revisiting value-at-risk and expected shortfall in oil markets under structural breaks: The role of fat-tailed distributions," Energy Economics, Elsevier, vol. 101(C).
    8. Fiszeder, Piotr & Fałdziński, Marcin & Molnár, Peter, 2023. "Attention to oil prices and its impact on the oil, gold and stock markets and their covariance," Energy Economics, Elsevier, vol. 120(C).
    9. Angelidis, Timotheos & Benos, Alexandros & Degiannakis, Stavros, 2004. "The Use of GARCH Models in VaR Estimation," MPRA Paper 96332, University Library of Munich, Germany.
    10. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian & Yoon, Seong-Min, 2021. "OPEC news and jumps in the oil market," Energy Economics, Elsevier, vol. 96(C).
    11. Mei-Ling Tang & Trung K. Do, 2019. "In search of robust methods for multi-currency portfolio construction by value at risk," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 26(1), pages 107-126, March.
    12. de Araújo, André da Silva & Garcia, Maria Teresa Medeiros, 2013. "Risk contagion in the north-western and southern European stock markets," Journal of Economics and Business, Elsevier, vol. 69(C), pages 1-34.
    13. Halkos, George E. & Tsirivis, Apostolos S., 2019. "Value-at-risk methodologies for effective energy portfolio risk management," Economic Analysis and Policy, Elsevier, vol. 62(C), pages 197-212.
    14. Bradley T. Ewing & Farooq Malik & Hassan Anjum, 2019. "Forecasting value‐at‐risk in oil prices in the presence of volatility shifts," Review of Financial Economics, John Wiley & Sons, vol. 37(3), pages 341-350, July.
    15. Geenens, Gery & Dunn, Richard, 2022. "A nonparametric copula approach to conditional Value-at-Risk," Econometrics and Statistics, Elsevier, vol. 21(C), pages 19-37.
    16. Shen, Yiran & Sun, Xiaolei & Ji, Qiang & Zhang, Dayong, 2023. "Climate events matter in the global natural gas market," Energy Economics, Elsevier, vol. 125(C).
    17. Xu, Yan & Liu, Tianli & Du, Pei, 2024. "Volatility forecasting of crude oil futures based on Bi-LSTM-Attention model: The dynamic role of the COVID-19 pandemic and the Russian-Ukrainian conflict," Resources Policy, Elsevier, vol. 88(C).
    18. Riza Demirer & Rangan Gupta & Qiang Ji & Aviral Kumar Tiwari, 2018. "Geopolitical Risks and the Predictability of Regional Oil Returns and Volatility," Working Papers 201860, University of Pretoria, Department of Economics.
    19. Halkos, George & Tsirivis, Apostolos, 2019. "Using Value-at-Risk for effective energy portfolio risk management," MPRA Paper 91674, University Library of Munich, Germany.
    20. Rostagno, Luciano Martin, 2005. "Empirical tests of parametric and non-parametric Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR) measures for the Brazilian stock market index," ISU General Staff Papers 2005010108000021878, Iowa State University, Department of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecmode:v:130:y:2024:i:c:s0264999323003991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30411 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.