IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i18p5831-d636032.html
   My bibliography  Save this article

Performance Evaluation of Forecasting Strategies for Electricity Consumption in Buildings

Author

Listed:
  • Sarah Hadri

    (LERMA-TIC Labs, College of Engineering and Architecture, International University of Rabat, Sala Al Jadida 11100, Morocco
    LaRIT Lab, IbnTofail University, Kenitra 14000, Morocco)

  • Mehdi Najib

    (LERMA-TIC Labs, College of Engineering and Architecture, International University of Rabat, Sala Al Jadida 11100, Morocco)

  • Mohamed Bakhouya

    (LERMA-TIC Labs, College of Engineering and Architecture, International University of Rabat, Sala Al Jadida 11100, Morocco)

  • Youssef Fakhri

    (LaRIT Lab, IbnTofail University, Kenitra 14000, Morocco)

  • Mohamed El Arroussi

    (LaGe, Ecole Hassania des Travaux Public, Casablanca 20230, Morocco)

Abstract

In this paper, three main approaches (univariate, multivariate and multistep) for electricity consumption forecasting have been investigated. In fact, three major algorithms (XGBOOST, LSTM and SARIMA) have been evaluated in each approach with the main aim to figure out which one performs the best in forecasting electricity consumption. The motivation behind this work is to assess the forecasting accuracy and the computational time/complexity for an embedded forecasting and model training at the smart meter level. Moreover, we investigate the deployment of the most efficient model in our platform for an online electricity consumption forecasting. This solution will serve for deploying predictive control solutions for efficient energy management in buildings. As a proof of concept, an already existing public dataset has been used. These data were mainly collected thanks to the usage of already deployed sensors. These provide accurate data related to occupancy (e.g., presence) as well as contextual data (e.g., disaggregated electricity consumption of equipment). Experiments have been conducted and the results showed the effectiveness of these algorithms, used in each approach, for short-term electricity consumption forecasting. This has been proved by performance evaluation and error calculations. The obtained results mainly shed light on the challenging trade-off between embedded forecasting model training and processing for being deployed in smart meters for electricity consumption forecasting.

Suggested Citation

  • Sarah Hadri & Mehdi Najib & Mohamed Bakhouya & Youssef Fakhri & Mohamed El Arroussi, 2021. "Performance Evaluation of Forecasting Strategies for Electricity Consumption in Buildings," Energies, MDPI, vol. 14(18), pages 1-17, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5831-:d:636032
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/18/5831/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/18/5831/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Baris Yuce & Monjur Mourshed & Yacine Rezgui, 2017. "A Smart Forecasting Approach to District Energy Management," Energies, MDPI, vol. 10(8), pages 1-22, July.
    2. Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
    3. Haben, Stephen & Ward, Jonathan & Vukadinovic Greetham, Danica & Singleton, Colin & Grindrod, Peter, 2014. "A new error measure for forecasts of household-level, high resolution electrical energy consumption," International Journal of Forecasting, Elsevier, vol. 30(2), pages 246-256.
    4. Malekizadeh, M. & Karami, H. & Karimi, M. & Moshari, A. & Sanjari, M.J., 2020. "Short-term load forecast using ensemble neuro-fuzzy model," Energy, Elsevier, vol. 196(C).
    5. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    6. Xue, Puning & Jiang, Yi & Zhou, Zhigang & Chen, Xin & Fang, Xiumu & Liu, Jing, 2019. "Multi-step ahead forecasting of heat load in district heating systems using machine learning algorithms," Energy, Elsevier, vol. 188(C).
    7. Salah Bouktif & Ali Fiaz & Ali Ouni & Mohamed Adel Serhani, 2018. "Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches †," Energies, MDPI, vol. 11(7), pages 1-20, June.
    8. Ke Yan & Xudong Wang & Yang Du & Ning Jin & Haichao Huang & Hangxia Zhou, 2018. "Multi-Step Short-Term Power Consumption Forecasting with a Hybrid Deep Learning Strategy," Energies, MDPI, vol. 11(11), pages 1-15, November.
    9. Friedman, Jerome H., 2002. "Stochastic gradient boosting," Computational Statistics & Data Analysis, Elsevier, vol. 38(4), pages 367-378, February.
    10. Mostafa Majidpour & Hamidreza Nazaripouya & Peter Chu & Hemanshu R. Pota & Rajit Gadh, 2018. "Fast Univariate Time Series Prediction of Solar Power for Real-Time Control of Energy Storage System," Forecasting, MDPI, vol. 1(1), pages 1-14, September.
    11. Souhaib Ben Taieb & Rob J Hyndman, 2012. "Recursive and direct multi-step forecasting: the best of both worlds," Monash Econometrics and Business Statistics Working Papers 19/12, Monash University, Department of Econometrics and Business Statistics.
    12. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    13. Lusis, Peter & Khalilpour, Kaveh Rajab & Andrew, Lachlan & Liebman, Ariel, 2017. "Short-term residential load forecasting: Impact of calendar effects and forecast granularity," Applied Energy, Elsevier, vol. 205(C), pages 654-669.
    14. Cai, Mengmeng & Pipattanasomporn, Manisa & Rahman, Saifur, 2019. "Day-ahead building-level load forecasts using deep learning vs. traditional time-series techniques," Applied Energy, Elsevier, vol. 236(C), pages 1078-1088.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Omar Jouma El-Hafez & Tarek Y. ElMekkawy & Mohamed Kharbeche & Ahmed Massoud, 2022. "Impact of COVID-19 Pandemic on Qatar Electricity Demand and Load Forecasting: Preparedness of Distribution Networks for Emerging Situations," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    2. Daniela Durand & Jose Aguilar & Maria D. R-Moreno, 2022. "An Analysis of the Energy Consumption Forecasting Problem in Smart Buildings Using LSTM," Sustainability, MDPI, vol. 14(20), pages 1-22, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinheiro, Marco G. & Madeira, Sara C. & Francisco, Alexandre P., 2023. "Short-term electricity load forecasting—A systematic approach from system level to secondary substations," Applied Energy, Elsevier, vol. 332(C).
    2. Thomas Steens & Jan-Simon Telle & Benedikt Hanke & Karsten von Maydell & Carsten Agert & Gian-Luca Di Modica & Bernd Engel & Matthias Grottke, 2021. "A Forecast-Based Load Management Approach for Commercial Buildings Demonstrated on an Integration of BEV," Energies, MDPI, vol. 14(12), pages 1-25, June.
    3. Jason Runge & Radu Zmeureanu, 2021. "A Review of Deep Learning Techniques for Forecasting Energy Use in Buildings," Energies, MDPI, vol. 14(3), pages 1-26, January.
    4. Pekka Koponen & Jussi Ikäheimo & Juha Koskela & Christina Brester & Harri Niska, 2020. "Assessing and Comparing Short Term Load Forecasting Performance," Energies, MDPI, vol. 13(8), pages 1-17, April.
    5. Ivana Kiprijanovska & Simon Stankoski & Igor Ilievski & Slobodan Jovanovski & Matjaž Gams & Hristijan Gjoreski, 2020. "HousEEC: Day-Ahead Household Electrical Energy Consumption Forecasting Using Deep Learning," Energies, MDPI, vol. 13(10), pages 1-29, May.
    6. Roman V. Klyuev & Irbek D. Morgoev & Angelika D. Morgoeva & Oksana A. Gavrina & Nikita V. Martyushev & Egor A. Efremenkov & Qi Mengxu, 2022. "Methods of Forecasting Electric Energy Consumption: A Literature Review," Energies, MDPI, vol. 15(23), pages 1-33, November.
    7. Nasios, Ioannis & Vogklis, Konstantinos, 2022. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1448-1459.
    8. Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
    9. Wang, Yi & Gan, Dahua & Sun, Mingyang & Zhang, Ning & Lu, Zongxiang & Kang, Chongqing, 2019. "Probabilistic individual load forecasting using pinball loss guided LSTM," Applied Energy, Elsevier, vol. 235(C), pages 10-20.
    10. Haben, Stephen & Arora, Siddharth & Giasemidis, Georgios & Voss, Marcus & Vukadinović Greetham, Danica, 2021. "Review of low voltage load forecasting: Methods, applications, and recommendations," Applied Energy, Elsevier, vol. 304(C).
    11. Jihoon Moon & Junhong Kim & Pilsung Kang & Eenjun Hwang, 2020. "Solving the Cold-Start Problem in Short-Term Load Forecasting Using Tree-Based Methods," Energies, MDPI, vol. 13(4), pages 1-37, February.
    12. Buzna, Luboš & De Falco, Pasquale & Ferruzzi, Gabriella & Khormali, Shahab & Proto, Daniela & Refa, Nazir & Straka, Milan & van der Poel, Gijs, 2021. "An ensemble methodology for hierarchical probabilistic electric vehicle load forecasting at regular charging stations," Applied Energy, Elsevier, vol. 283(C).
    13. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    14. van der Meer, D.W. & Shepero, M. & Svensson, A. & Widén, J. & Munkhammar, J., 2018. "Probabilistic forecasting of electricity consumption, photovoltaic power generation and net demand of an individual building using Gaussian Processes," Applied Energy, Elsevier, vol. 213(C), pages 195-207.
    15. Ioannis Nasios & Konstantinos Vogklis, 2023. "Blending gradient boosted trees and neural networks for point and probabilistic forecasting of hierarchical time series," Papers 2310.13029, arXiv.org.
    16. Oh, Jiyoung & Min, Daiki, 2024. "Prediction of energy consumption for manufacturing small and medium-sized enterprises (SMEs) considering industry characteristics," Energy, Elsevier, vol. 300(C).
    17. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    18. Alfredo Nespoli & Emanuele Ogliari & Silvia Pretto & Michele Gavazzeni & Sonia Vigani & Franco Paccanelli, 2021. "Electrical Load Forecast by Means of LSTM: The Impact of Data Quality," Forecasting, MDPI, vol. 3(1), pages 1-11, February.
    19. Hany Habbak & Mohamed Mahmoud & Khaled Metwally & Mostafa M. Fouda & Mohamed I. Ibrahem, 2023. "Load Forecasting Techniques and Their Applications in Smart Grids," Energies, MDPI, vol. 16(3), pages 1-33, February.
    20. Shepero, Mahmoud & van der Meer, Dennis & Munkhammar, Joakim & Widén, Joakim, 2018. "Residential probabilistic load forecasting: A method using Gaussian process designed for electric load data," Applied Energy, Elsevier, vol. 218(C), pages 159-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:18:p:5831-:d:636032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.