IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v44y2017i4p685-699.html
   My bibliography  Save this article

Comparison of data analysis procedures for real-time nanoparticle sampling data using classical regression and ARIMA models

Author

Listed:
  • Seunghon Ham
  • Sunju Kim
  • Naroo Lee
  • Pilje Kim
  • Igchun Eom
  • Byoungcheun Lee
  • Perng-Jy Tsai
  • Kiyoung Lee
  • Chungsik Yoon

Abstract

Real-time monitoring is necessary for nanoparticle exposure assessment to characterize the exposure profile, but the data produced are autocorrelated. This study was conducted to compare three statistical methods used to analyze data, which constitute autocorrelated time series, and to investigate the effect of averaging time on the reduction of the autocorrelation using field data. First-order autoregressive (AR(1)) and autoregressive-integrated moving average (ARIMA) models are alternative methods that remove autocorrelation. The classical regression method was compared with AR(1) and ARIMA. Three data sets were used. Scanning mobility particle sizer data were used. We compared the results of regression, AR(1), and ARIMA with averaging times of 1, 5, and 10 min. AR(1) and ARIMA models had similar capacities to adjust autocorrelation of real-time data. Because of the non-stationary of real-time monitoring data, the ARIMA was more appropriate. When using the AR(1), transformation into stationary data was necessary. There was no difference with a longer averaging time. This study suggests that the ARIMA model could be used to process real-time monitoring data especially for non-stationary data, and averaging time setting is flexible depending on the data interval required to capture the effects of processes for occupational and environmental nano measurements.

Suggested Citation

  • Seunghon Ham & Sunju Kim & Naroo Lee & Pilje Kim & Igchun Eom & Byoungcheun Lee & Perng-Jy Tsai & Kiyoung Lee & Chungsik Yoon, 2017. "Comparison of data analysis procedures for real-time nanoparticle sampling data using classical regression and ARIMA models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 44(4), pages 685-699, March.
  • Handle: RePEc:taf:japsta:v:44:y:2017:i:4:p:685-699
    DOI: 10.1080/02664763.2016.1182132
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2016.1182132
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2016.1182132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. E. Andres Houseman & Louise Ryan & Jonathan Levy & John Spengler, 2002. "Autocorrelation in real-time continuous monitoring of microenvironments," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(6), pages 855-872.
    2. T. Ozaki, 1977. "On the Order Determination of Arima Models," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 26(3), pages 290-301, November.
    3. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    4. Mingfeng Lin & Henry C. Lucas & Galit Shmueli, 2013. "Research Commentary ---Too Big to Fail: Large Samples and the p -Value Problem," Information Systems Research, INFORMS, vol. 24(4), pages 906-917, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    2. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    3. Hsin-Han Chen & Hui-Ling Chen & Yi-Tien Lin & Chaou-Wen Lin & Chien-Chang Ho & Hsueh-Yi Lin & Po-Fu Lee, 2020. "The Associations between Functional Fitness Test Performance and Abdominal Obesity in Healthy Elderly People: Results from the National Physical Fitness Examination Survey in Taiwan," IJERPH, MDPI, vol. 18(1), pages 1-14, December.
    4. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    5. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    6. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    7. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    8. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    9. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    10. Yen-Chun Chou & Howard Hao-Chun Chuang, 2018. "A predictive investigation of first-time customer retention in online reservation services," Service Business, Springer;Pan-Pacific Business Association, vol. 12(4), pages 685-699, December.
    11. Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.
    12. Fijorek Kamil & Leśniewska Agnieszka, 2012. "Statistical Forecasting of the Indicators of Polish Airport’s Operations," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 7-7, January.
    13. Tang, Kayu & Parsons, David J. & Jude, Simon, 2019. "Comparison of automatic and guided learning for Bayesian networks to analyse pipe failures in the water distribution system," Reliability Engineering and System Safety, Elsevier, vol. 186(C), pages 24-36.
    14. Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
    15. Sujin Park & Ali Tafti & Galit Shmueli, 2024. "Transporting Causal Effects Across Populations Using Structural Causal Modeling: An Illustration to Work-from-Home Productivity," Information Systems Research, INFORMS, vol. 35(2), pages 686-705, June.
    16. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    17. Claire Teunenbroek & René Bekkers & Bianca Beersma, 2021. "They ought to do it too: Understanding effects of social information on donation behavior and mood," International Review on Public and Nonprofit Marketing, Springer;International Association of Public and Non-Profit Marketing, vol. 18(2), pages 229-253, June.
    18. Miroslav Navratil & Andrea Kolkova, 2019. "Decomposition and Forecasting Time Series in the Business Economy Using Prophet Forecasting Model," Central European Business Review, Prague University of Economics and Business, vol. 2019(4), pages 26-39.
    19. G'abor Petneh'azi & J'ozsef G'all, 2019. "Mortality rate forecasting: can recurrent neural networks beat the Lee-Carter model?," Papers 1909.05501, arXiv.org, revised Oct 2019.
    20. Thierry Moudiki & Frédéric Planchet & Areski Cousin, 2018. "Multiple Time Series Forecasting Using Quasi-Randomized Functional Link Neural Networks," Risks, MDPI, vol. 6(1), pages 1-20, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:44:y:2017:i:4:p:685-699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.