IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v40y2024i4p1467-1485.html
   My bibliography  Save this article

Forecasting seasonal demand for retail: A Fourier time-varying grey model

Author

Listed:
  • Ye, Lili
  • Xie, Naiming
  • Boylan, John E.
  • Shang, Zhongju

Abstract

Seasonal demand forecasting is critical for effective supply chain management. However, conventional forecasting methods face difficulties accurately estimating seasonal variations, owing to time-varying demand trends and limited data availability. In this paper, we propose a Fourier time-varying grey model (FTGM) to tackle this issue. The FTGM builds upon grey models, which are effective with limited data, and leverages Fourier functions to approximate time-varying parameters that allow it to represent seasonal variations. A data-driven selection algorithm adaptively determines the appropriate Fourier order of the FTGM without prior knowledge of data characteristics. Using the well-known M5 competition data, we compare our model with state-of-the-art forecasting methods taken from grey models, statistical methods, and architectures of neural network-based methods. The experimental results show that the FTGM outperforms popular seasonal forecasting methods in terms of standard accuracy metrics, providing a competitive alternative for seasonal demand forecasting in retail companies.

Suggested Citation

  • Ye, Lili & Xie, Naiming & Boylan, John E. & Shang, Zhongju, 2024. "Forecasting seasonal demand for retail: A Fourier time-varying grey model," International Journal of Forecasting, Elsevier, vol. 40(4), pages 1467-1485.
  • Handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1467-1485
    DOI: 10.1016/j.ijforecast.2023.12.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207023001383
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2023.12.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:40:y:2024:i:4:p:1467-1485. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.