IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v181y2016icp288-298.html
   My bibliography  Save this article

Aggregate modeling of fast-acting demand response and control under real-time pricing

Author

Listed:
  • Chassin, David P.
  • Rondeau, Daniel

Abstract

This paper develops and assesses the performance of a short-term demand response (DR) model for utility load control with applications to resource planning and control design. Long term response models tend to underestimate short-term demand response when induced by prices. This has two important consequences. First, planning studies tend to undervalue DR and often overlook its benefits in utility demand management program development. Second, when DR is not overlooked, the open-loop DR control gain estimate may be too low. This can result in overuse of load resources, control instability and excessive price volatility. Our objective is therefore to develop a more accurate and better performing short-term demand response model. We construct the model from first principles about the nature of thermostatic load control and show that the resulting formulation corresponds exactly to the Random Utility Model employed in economics to study consumer choice. The model is tested against empirical data collected from field demonstration projects and is shown to perform better than alternative models commonly used to forecast demand in normal operating conditions. The results suggest that (1) existing utility tariffs appear to be inadequate to incentivize demand response, particularly in the presence of high renewables, and (2) existing load control systems run the risk of becoming unstable if utilities close the loop on real-time prices.

Suggested Citation

  • Chassin, David P. & Rondeau, Daniel, 2016. "Aggregate modeling of fast-acting demand response and control under real-time pricing," Applied Energy, Elsevier, vol. 181(C), pages 288-298.
  • Handle: RePEc:eee:appene:v:181:y:2016:i:c:p:288-298
    DOI: 10.1016/j.apenergy.2016.08.071
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916311588
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.08.071?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fan, Shu & Hyndman, Rob J., 2011. "The price elasticity of electricity demand in South Australia," Energy Policy, Elsevier, vol. 39(6), pages 3709-3719, June.
    2. Daniel L. McFadden, 1976. "Quantal Choice Analysis: A Survey," NBER Chapters, in: Annals of Economic and Social Measurement, Volume 5, number 4, pages 363-390, National Bureau of Economic Research, Inc.
    3. Faruqui, Ahmad & Hledik, Ryan & Tsoukalis, John, 2009. "The Power of Dynamic Pricing," The Electricity Journal, Elsevier, vol. 22(3), pages 42-56, April.
    4. Faruqui, Ahmad & Malko, J.Robert, 1983. "The residential demand for electricity by time-of-use: A survey of twelve experiments with peak load pricing," Energy, Elsevier, vol. 8(10), pages 781-795.
    5. Severin Borenstein, 2002. "The Trouble With Electricity Markets: Understanding California's Restructuring Disaster," Journal of Economic Perspectives, American Economic Association, vol. 16(1), pages 191-211, Winter.
    6. Chassin, David P. & Kiesling, Lynne, 2008. "Decentralized Coordination through Digital Technology, Dynamic Pricing, and Customer-Driven Control: The GridWise Testbed Demonstration Project," The Electricity Journal, Elsevier, vol. 21(8), pages 51-59, October.
    7. Caves, Douglas W. & Christensen, Laurits R. & Herriges, Joseph A., 1984. "Consistency of residential customer response in time-of-use electricity pricing experiments," Journal of Econometrics, Elsevier, vol. 26(1-2), pages 179-203.
    8. Andrew A. Goett & Kathleen Hudson & Kenneth E. Train, 2000. "Customers' Choice Among Retail Energy Suppliers: The Willingness-to-Pay for Service Attributes," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4), pages 1-28.
    9. Peter C. Reiss & Matthew W. White, 2005. "Household Electricity Demand, Revisited," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 72(3), pages 853-883.
    10. Ahmad Faruqui & Sanem Sergici, 2010. "Household response to dynamic pricing of electricity: a survey of 15 experiments," Journal of Regulatory Economics, Springer, vol. 38(2), pages 193-225, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Märkle-Huß, Joscha & Feuerriegel, Stefan & Neumann, Dirk, 2018. "Large-scale demand response and its implications for spot prices, load and policies: Insights from the German-Austrian electricity market," Applied Energy, Elsevier, vol. 210(C), pages 1290-1298.
    2. Qi, Wei & Shen, Bo & Zhang, Hongcai & Shen, Zuo-Jun Max, 2017. "Sharing demand-side energy resources - A conceptual design," Energy, Elsevier, vol. 135(C), pages 455-465.
    3. Pedro Faria & João Spínola & Zita Vale, 2018. "Distributed Energy Resources Scheduling and Aggregation in the Context of Demand Response Programs," Energies, MDPI, vol. 11(8), pages 1-17, July.
    4. Xu, Fangyuan & Zhu, Weidong & Wang, Yi Fei & Lai, Chun Sing & Yuan, Haoliang & Zhao, Yujia & Guo, Siming & Fu, Zhengxin, 2022. "A new deregulated demand response scheme for load over-shifting city in regulated power market," Applied Energy, Elsevier, vol. 311(C).
    5. Zhang, Chonghui & Wang, Zhen & Su, Weihua & Dalia, Streimikiene, 2024. "Differentiated power rationing or seasonal power price? Optimal power allocation solution for Chinese industrial enterprises based on the CSW-DEA model," Applied Energy, Elsevier, vol. 353(PB).
    6. Fan, Songli & Ai, Qian & Piao, Longjian, 2018. "Bargaining-based cooperative energy trading for distribution company and demand response," Applied Energy, Elsevier, vol. 226(C), pages 469-482.
    7. Zhang, Lingxi & Good, Nicholas & Mancarella, Pierluigi, 2019. "Building-to-grid flexibility: Modelling and assessment metrics for residential demand response from heat pump aggregations," Applied Energy, Elsevier, vol. 233, pages 709-723.
    8. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2019. "Demand Price Elasticity of Residential Electricity Consumers with Zonal Tariff Settlement Based on Their Load Profiles," Energies, MDPI, vol. 12(22), pages 1-22, November.
    9. Andruszkiewicz, Jerzy & Lorenc, Józef & Weychan, Agnieszka, 2020. "Seasonal variability of price elasticity of demand of households using zonal tariffs and its impact on hourly load of the power system," Energy, Elsevier, vol. 196(C).
    10. Motalleb, Mahdi & Annaswamy, Anuradha & Ghorbani, Reza, 2018. "A real-time demand response market through a repeated incomplete-information game," Energy, Elsevier, vol. 143(C), pages 424-438.
    11. Hui, Hongxun & Ding, Yi & Liu, Weidong & Lin, You & Song, Yonghua, 2017. "Operating reserve evaluation of aggregated air conditioners," Applied Energy, Elsevier, vol. 196(C), pages 218-228.
    12. Kong, Xiangyu & Lu, Wenqi & Wu, Jianzhong & Wang, Chengshan & Zhao, Xv & Hu, Wei & Shen, Yu, 2023. "Real-time pricing method for VPP demand response based on PER-DDPG algorithm," Energy, Elsevier, vol. 271(C).
    13. Jerzy Andruszkiewicz & Józef Lorenc & Agnieszka Weychan, 2021. "Price-Based Demand Side Response Programs and Their Effectiveness on the Example of TOU Electricity Tariff for Residential Consumers," Energies, MDPI, vol. 14(2), pages 1-21, January.
    14. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2018. "Transactive control of fast-acting demand response based on thermostatic loads in real-time retail electricity markets," Applied Energy, Elsevier, vol. 210(C), pages 1310-1320.
    15. Lakshmanan, Venkatachalam & Sæle, Hanne & Degefa, Merkebu Zenebe, 2021. "Electric water heater flexibility potential and activation impact in system operator perspective – Norwegian scenario case study," Energy, Elsevier, vol. 236(C).
    16. Ran, Fengming & Gao, Dian-ce & Zhang, Xu & Chen, Shuyue, 2020. "A virtual sensor based self-adjusting control for HVAC fast demand response in commercial buildings towards smart grid applications," Applied Energy, Elsevier, vol. 269(C).
    17. Xie, Dunjian & Hui, Hongxun & Ding, Yi & Lin, Zhenzhi, 2018. "Operating reserve capacity evaluation of aggregated heterogeneous TCLs with price signals," Applied Energy, Elsevier, vol. 216(C), pages 338-347.
    18. Zhang, S. & Mishra, Y. & Shahidehpour, M., 2017. "Utilizing distributed energy resources to support frequency regulation services," Applied Energy, Elsevier, vol. 206(C), pages 1484-1494.
    19. Behboodi, Sahand & Chassin, David P. & Djilali, Ned & Crawford, Curran, 2017. "Interconnection-wide hour-ahead scheduling in the presence of intermittent renewables and demand response: A surplus maximizing approach," Applied Energy, Elsevier, vol. 189(C), pages 336-351.
    20. Adhikari, Rajendra & Pipattanasomporn, M. & Rahman, S., 2018. "An algorithm for optimal management of aggregated HVAC power demand using smart thermostats," Applied Energy, Elsevier, vol. 217(C), pages 166-177.
    21. Jia, Hongjie & Li, Xiaomeng & Mu, Yunfei & Xu, Chen & Jiang, Yilang & Yu, Xiaodan & Wu, Jianzhong & Dong, Chaoyu, 2018. "Coordinated control for EV aggregators and power plants in frequency regulation considering time-varying delays," Applied Energy, Elsevier, vol. 210(C), pages 1363-1376.
    22. Máximo A. Domínguez-Garabitos & Víctor S. Ocaña-Guevara & Félix Santos-García & Adriana Arango-Manrique & Miguel Aybar-Mejía, 2022. "A Methodological Proposal for Implementing Demand-Shifting Strategies in the Wholesale Electricity Market," Energies, MDPI, vol. 15(4), pages 1-28, February.
    23. Bejan, Ioana & Jensen, Carsten Lynge & Andersen, Laura M. & Hansen, Lars Gårn, 2021. "Inducing flexibility of household electricity demand: The overlooked costs of reacting to dynamic incentives," Applied Energy, Elsevier, vol. 284(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Woo, C.K. & Shiu, A. & Liu, Y. & Luo, X. & Zarnikau, J., 2018. "Consumption effects of an electricity decarbonization policy: Hong Kong," Energy, Elsevier, vol. 144(C), pages 887-902.
    2. Woo, C.K. & Liu, Y. & Zarnikau, J. & Shiu, A. & Luo, X. & Kahrl, F., 2018. "Price elasticities of retail energy demands in the United States: New evidence from a panel of monthly data for 2001–2016," Applied Energy, Elsevier, vol. 222(C), pages 460-474.
    3. Jieyi Kang & David Reiner, 2021. "Machine Learning on residential electricity consumption: Which households are more responsive to weather?," Working Papers EPRG2113, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    4. Woo, C.K. & Sreedharan, P. & Hargreaves, J. & Kahrl, F. & Wang, J. & Horowitz, I., 2014. "A review of electricity product differentiation," Applied Energy, Elsevier, vol. 114(C), pages 262-272.
    5. Woo, C.K. & Li, R. & Shiu, A. & Horowitz, I., 2013. "Residential winter kWh responsiveness under optional time-varying pricing in British Columbia," Applied Energy, Elsevier, vol. 108(C), pages 288-297.
    6. Hobman, Elizabeth V. & Frederiks, Elisha R. & Stenner, Karen & Meikle, Sarah, 2016. "Uptake and usage of cost-reflective electricity pricing: Insights from psychology and behavioural economics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 455-467.
    7. Guo, Peiyang & Lam, Jacqueline C.K. & Li, Victor O.K., 2019. "Drivers of domestic electricity users’ price responsiveness: A novel machine learning approach," Applied Energy, Elsevier, vol. 235(C), pages 900-913.
    8. Cappers, Peter A. & Todd-Blick, Annika, 2021. "Heterogeneity in own-price residential customer demand elasticities for electricity under time-of-use rates: Evidence from a randomized-control trial in the United States," Utilities Policy, Elsevier, vol. 73(C).
    9. Møller, Niels Framroze & Andersen, Laura Mørch & Hansen, Lars Gårn & Jensen, Carsten Lynge, 2019. "Can pecuniary and environmental incentives via SMS messaging make households adjust their electricity demand to a fluctuating production?," Energy Economics, Elsevier, vol. 80(C), pages 1050-1058.
    10. Koichiro Ito, 2015. "Asymmetric Incentives in Subsidies: Evidence from a Large-Scale Electricity Rebate Program," American Economic Journal: Economic Policy, American Economic Association, vol. 7(3), pages 209-237, August.
    11. He, Yongxiu & Wang, Bing & Wang, Jianhui & Xiong, Wei & Xia, Tian, 2012. "Residential demand response behavior analysis based on Monte Carlo simulation: The case of Yinchuan in China," Energy, Elsevier, vol. 47(1), pages 230-236.
    12. Kazutoshi Tsuda & Michinori Uwasu & Keishiro Hara & Yukari Fuchigami, 2017. "Approaches to induce behavioral changes with respect to electricity consumption," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 7(1), pages 30-38, March.
    13. Niels Framroze Møller & Laura Mørch Andersen & Lars Gårn Hansen & Carsten Lynge Jensen, 2018. "Can pecuniary and environmental incentives via SMS messaging make households adjust their intra-day electricity demand to a fluctuating production?," IFRO Working Paper 2018/06, University of Copenhagen, Department of Food and Resource Economics.
    14. Li, Raymond & Woo, Chi-Keung & Cox, Kevin, 2021. "How price-responsive is residential retail electricity demand in the US?," Energy, Elsevier, vol. 232(C).
    15. Takanori Ida, Kayo Murakami, and Makoto Tanaka, 2016. "Electricity demand response in Japan: Experimental evidence from a residential photovoltaic power-generation system," Economics of Energy & Environmental Policy, International Association for Energy Economics, vol. 0(Number 1).
    16. Nolan Ritter & Julia Anna Bingler, 2021. "Do homo sapiens know their prices? Insights on dysfunctional price mechanisms from a large field experiment," CER-ETH Economics working paper series 21/348, CER-ETH - Center of Economic Research (CER-ETH) at ETH Zurich.
    17. Herter, Karen & Wayland, Seth, 2010. "Residential response to critical-peak pricing of electricity: California evidence," Energy, Elsevier, vol. 35(4), pages 1561-1567.
    18. Kiran B Krishnamurthy, Chandra & Kriström, Bengt, 2013. "A cross-country analysis of residential electricity demand in 11 OECD-countries," CERE Working Papers 2013:5, CERE - the Center for Environmental and Resource Economics, revised 30 Jun 2014.
    19. Cho, Seong-Hoon & Kim, Taeyoung & Kim, Hyun Jae & Park, Kihyun & Roberts, Roland K., 2015. "Regionally-varying and regionally-uniform electricity pricing policies compared across four usage categories," Energy Economics, Elsevier, vol. 49(C), pages 182-191.
    20. Robert W. Hahn & Robert D. Metcalfe, 2021. "Efficiency and Equity Impacts of Energy Subsidies," American Economic Review, American Economic Association, vol. 111(5), pages 1658-1688, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:181:y:2016:i:c:p:288-298. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.