Forecasting the Intermittent Demand for Slow-Moving Items
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Ralph D. Snyder & J. Keith Ord & Adrian Beaumont, 2010. "Forecasting the Intermittent Demand for Slow-Moving Items," Working Papers 2010-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting, revised Mar 2011.
References listed on IDEAS
- Muhammad Akram & Rob J Hyndman & J. Keith Ord, 2008. "Exponential smoothing and non-negative data," Working Papers 2008-003, The George Washington University, Department of Economics, H. O. Stekler Research Program on Forecasting.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
- Ralph Snyder & Adrian Beaumont & J. Keith Ord, 2012. "Intermittent demand forecasting for inventory control: A multi-series approach," Monash Econometrics and Business Statistics Working Papers 15/12, Monash University, Department of Econometrics and Business Statistics.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Alysha M De Livera, 2010. "Automatic forecasting with a modified exponential smoothing state space framework," Monash Econometrics and Business Statistics Working Papers 10/10, Monash University, Department of Econometrics and Business Statistics.
- Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
- de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
- Svetunkov, Ivan & Boylan, John Edward, 2017. "Multiplicative state-space models for intermittent time series," MPRA Paper 82487, University Library of Munich, Germany.
More about this item
Keywords
Croston's method; Exponential smoothing; Intermittent demand; Inventory control; Prediction likelihood; State space models; Zero-inflated Poisson distribution;All these keywords.
JEL classification:
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2010-05-22 (Econometrics)
- NEP-ETS-2010-05-22 (Econometric Time Series)
- NEP-FOR-2010-05-22 (Forecasting)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2010-12. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.