IDEAS home Printed from https://ideas.repec.org/a/eee/proeco/v231y2021ics0925527320301985.html
   My bibliography  Save this article

Intraday shelf replenishment decision support for perishable goods

Author

Listed:
  • Huber, Jakob
  • Stuckenschmidt, Heiner

Abstract

Retailers that offer perishable items are required to make hundreds of ordering decisions on a daily basis. For certain products, it is even necessary to make intraday decisions in order to increase the freshness of the goods while still serving the demand. We present a use case from the bakery domain where a part of the assortment has to be baked during the day as the delivered goods are not ready for sale. Hence, the operational performance depends on the decisions of the store personnel which can be optimized by a decision support system. Our approach to tackle this problem consists of two distinct phases: First, we forecast the hourly demand for each product. Second, the forecasts are input for a scheduling problem whose solution represents the baking plan that is provided to the store personnel. Based on our empirical evaluation, we conclude that forecasting accuracy has the biggest impact on the operational performance. More enhanced prediction methods noticeably outperform the reference methods. In particular, the machine learning based forecasting model significantly outperforms established time series models. If the computed schedules are executed as suggested, the customers can be served with freshly baked goods.

Suggested Citation

  • Huber, Jakob & Stuckenschmidt, Heiner, 2021. "Intraday shelf replenishment decision support for perishable goods," International Journal of Production Economics, Elsevier, vol. 231(C).
  • Handle: RePEc:eee:proeco:v:231:y:2021:i:c:s0925527320301985
    DOI: 10.1016/j.ijpe.2020.107828
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0925527320301985
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijpe.2020.107828?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karel H. van Donselaar & Vishal Gaur & Tom van Woensel & Rob A. C. M. Broekmeulen & Jan C. Fransoo, 2010. "Ordering Behavior in Retail Stores and Implications for Automated Replenishment," Management Science, INFORMS, vol. 56(5), pages 766-784, May.
    2. Wu, Lingxiao & Wang, Shuaian, 2018. "Exact and heuristic methods to solve the parallel machine scheduling problem with multi-processor tasks," International Journal of Production Economics, Elsevier, vol. 201(C), pages 26-40.
    3. Petropoulos, Fotios & Kourentzes, Nikolaos & Nikolopoulos, Konstantinos, 2016. "Another look at estimators for intermittent demand," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 154-161.
    4. Özgün Turgut & Florian Taube & Stefan Minner, 2018. "Data-driven retail inventory management with backroom effect," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 945-968, October.
    5. Dangerfield, Byron J. & Morris, John S., 1992. "Top-down or bottom-up: Aggregate versus disaggregate extrapolations," International Journal of Forecasting, Elsevier, vol. 8(2), pages 233-241, October.
    6. Beutel, Anna-Lena & Minner, Stefan, 2012. "Safety stock planning under causal demand forecasting," International Journal of Production Economics, Elsevier, vol. 140(2), pages 637-645.
    7. Janssen, Larissa & Claus, Thorsten & Sauer, Jürgen, 2016. "Literature review of deteriorating inventory models by key topics from 2012 to 2015," International Journal of Production Economics, Elsevier, vol. 182(C), pages 86-112.
    8. Nesreen Ahmed & Amir Atiya & Neamat El Gayar & Hisham El-Shishiny, 2010. "An Empirical Comparison of Machine Learning Models for Time Series Forecasting," Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 594-621.
    9. Shanika L. Wickramasuriya & George Athanasopoulos & Rob J. Hyndman, 2019. "Optimal Forecast Reconciliation for Hierarchical and Grouped Time Series Through Trace Minimization," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 804-819, April.
    10. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    11. Qin, Yan & Wang, Ruoxuan & Vakharia, Asoo J. & Chen, Yuwen & Seref, Michelle M.H., 2011. "The newsvendor problem: Review and directions for future research," European Journal of Operational Research, Elsevier, vol. 213(2), pages 361-374, September.
    12. K Nikolopoulos & A A Syntetos & J E Boylan & F Petropoulos & V Assimakopoulos, 2011. "An aggregate–disaggregate intermittent demand approach (ADIDA) to forecasting: an empirical proposition and analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(3), pages 544-554, March.
    13. Chu, Ching-Wu & Zhang, Guoqiang Peter, 2003. "A comparative study of linear and nonlinear models for aggregate retail sales forecasting," International Journal of Production Economics, Elsevier, vol. 86(3), pages 217-231, December.
    14. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
    15. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    16. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2018. "The M4 Competition: Results, findings, conclusion and way forward," International Journal of Forecasting, Elsevier, vol. 34(4), pages 802-808.
    17. Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
    18. A Curşeu & T van Woensel & J Fransoo & K van Donselaar & R Broekmeulen, 2009. "Modelling handling operations in grocery retail stores: an empirical analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(2), pages 200-214, February.
    19. Anna-Lena Sachs, 2015. "Data-Driven Order Policies with Censored Demand and Substitution in Retailing," Lecture Notes in Economics and Mathematical Systems, in: Retail Analytics, edition 127, chapter 0, pages 57-78, Springer.
    20. Sachs, Anna-Lena & Minner, Stefan, 2014. "The data-driven newsvendor with censored demand observations," International Journal of Production Economics, Elsevier, vol. 149(C), pages 28-36.
    21. Widiarta, Handik & Viswanathan, S. & Piplani, Rajesh, 2009. "Forecasting aggregate demand: An analytical evaluation of top-down versus bottom-up forecasting in a production planning framework," International Journal of Production Economics, Elsevier, vol. 118(1), pages 87-94, March.
    22. Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
    23. Bakker, Monique & Riezebos, Jan & Teunter, Ruud H., 2012. "Review of inventory systems with deterioration since 2001," European Journal of Operational Research, Elsevier, vol. 221(2), pages 275-284.
    24. Hübner, Alexander H. & Kuhn, Heinrich, 2012. "Retail category management: State-of-the-art review of quantitative research and software applications in assortment and shelf space management," Omega, Elsevier, vol. 40(2), pages 199-209, April.
    25. van Zelst, Susan & van Donselaar, Karel & van Woensel, Tom & Broekmeulen, Rob & Fransoo, Jan, 2009. "Logistics drivers for shelf stacking in grocery retail stores: Potential for efficiency improvement," International Journal of Production Economics, Elsevier, vol. 121(2), pages 620-632, October.
    26. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    27. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    28. Ramanathan, Usha & Muyldermans, Luc, 2010. "Identifying demand factors for promotional planning and forecasting: A case of a soft drink company in the UK," International Journal of Production Economics, Elsevier, vol. 128(2), pages 538-545, December.
    29. V. Sridharan & William L. Berry & V. Udayabhanu, 1987. "Freezing the Master Production Schedule Under Rolling Planning Horizons," Management Science, INFORMS, vol. 33(9), pages 1137-1149, September.
    30. Lau, Hon-Shiang & Hing-Ling Lau, Amy, 1996. "Estimating the demand distributions of single-period items having frequent stockouts," European Journal of Operational Research, Elsevier, vol. 92(2), pages 254-265, July.
    31. Wan, Guohua & Yen, Benjamin P. -C., 2002. "Tabu search for single machine scheduling with distinct due windows and weighted earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 142(2), pages 271-281, October.
    32. Carbonneau, Real & Laframboise, Kevin & Vahidov, Rustam, 2008. "Application of machine learning techniques for supply chain demand forecasting," European Journal of Operational Research, Elsevier, vol. 184(3), pages 1140-1154, February.
    33. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    34. Broekmeulen, Rob A.C.M. & van Donselaar, Karel H., 2019. "Quantifying the potential to improve on food waste, freshness and sales for perishables in supermarkets," International Journal of Production Economics, Elsevier, vol. 209(C), pages 265-273.
    35. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    36. van Donselaar, K.H. & Peters, J. & de Jong, A. & Broekmeulen, R.A.C.M., 2016. "Analysis and forecasting of demand during promotions for perishable items," International Journal of Production Economics, Elsevier, vol. 172(C), pages 65-75.
    37. C Almeder & L Mönch, 2011. "Metaheuristics for scheduling jobs with incompatible families on parallel batching machines," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(12), pages 2083-2096, December.
    38. Kourentzes, Nikolaos & Petropoulos, Fotios, 2016. "Forecasting with multivariate temporal aggregation: The case of promotional modelling," International Journal of Production Economics, Elsevier, vol. 181(PA), pages 145-153.
    39. Qing, Xiangyun & Niu, Yugang, 2018. "Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM," Energy, Elsevier, vol. 148(C), pages 461-468.
    40. van Donselaar, K. & van Woensel, T. & Broekmeulen, R. & Fransoo, J., 2006. "Inventory control of perishables in supermarkets," International Journal of Production Economics, Elsevier, vol. 104(2), pages 462-472, December.
    41. Arunraj, Nari Sivanandam & Ahrens, Diane, 2015. "A hybrid seasonal autoregressive integrated moving average and quantile regression for daily food sales forecasting," International Journal of Production Economics, Elsevier, vol. 170(PA), pages 321-335.
    42. Spyros Makridakis & Evangelos Spiliotis & Vassilios Assimakopoulos, 2018. "Statistical and Machine Learning forecasting methods: Concerns and ways forward," PLOS ONE, Public Library of Science, vol. 13(3), pages 1-26, March.
    43. Ibrahim, Rouba & Ye, Han & L’Ecuyer, Pierre & Shen, Haipeng, 2016. "Modeling and forecasting call center arrivals: A literature survey and a case study," International Journal of Forecasting, Elsevier, vol. 32(3), pages 865-874.
    44. Zotteri, Giulio & Kalchschmidt, Matteo & Caniato, Federico, 2005. "The impact of aggregation level on forecasting performance," International Journal of Production Economics, Elsevier, vol. 93(1), pages 479-491, January.
    45. J Schaller & J M S Valente, 2013. "An evaluation of heuristics for scheduling a non-delay permutation flow shop with family setups to minimize total earliness and tardiness," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(6), pages 805-816, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewelina Chołodowicz & Przemysław Orłowski, 2024. "Neural Network Control of Perishable Inventory with Fixed Shelf Life Products and Fuzzy Order Refinement under Time-Varying Uncertain Demand," Energies, MDPI, vol. 17(4), pages 1-22, February.
    2. Liu, Chao & Lv, Jingyu & Hou, Ping & Lu, Danrong, 2023. "Disclosing products’ freshness level as a non-contractible quality: Optimal logistics service contracts in the fresh products supply chain," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1085-1102.
    3. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2023. "Industry 5.0 and Triple Bottom Line Approach in Supply Chain Management: The State-of-the-Art," Sustainability, MDPI, vol. 15(7), pages 1-30, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Huber, Jakob & Stuckenschmidt, Heiner, 2020. "Daily retail demand forecasting using machine learning with emphasis on calendric special days," International Journal of Forecasting, Elsevier, vol. 36(4), pages 1420-1438.
    2. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    3. Mou, Shandong & Robb, David J. & DeHoratius, Nicole, 2018. "Retail store operations: Literature review and research directions," European Journal of Operational Research, Elsevier, vol. 265(2), pages 399-422.
    4. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    5. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2020. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," Applied Energy, Elsevier, vol. 261(C).
    6. Huber, Jakob & Müller, Sebastian & Fleischmann, Moritz & Stuckenschmidt, Heiner, 2019. "A data-driven newsvendor problem: From data to decision," European Journal of Operational Research, Elsevier, vol. 278(3), pages 904-915.
    7. Spiliotis, Evangelos & Petropoulos, Fotios & Kourentzes, Nikolaos & Assimakopoulos, Vassilios, 2018. "Cross-temporal aggregation: Improving the forecast accuracy of hierarchical electricity consumption," MPRA Paper 91762, University Library of Munich, Germany.
    8. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Panagiotelis, Anastasios, 2024. "Forecast reconciliation: A review," International Journal of Forecasting, Elsevier, vol. 40(2), pages 430-456.
    9. Jeon, Jooyoung & Panagiotelis, Anastasios & Petropoulos, Fotios, 2019. "Probabilistic forecast reconciliation with applications to wind power and electric load," European Journal of Operational Research, Elsevier, vol. 279(2), pages 364-379.
    10. Spiliotis, Evangelos & Makridakis, Spyros & Kaltsounis, Anastasios & Assimakopoulos, Vassilios, 2021. "Product sales probabilistic forecasting: An empirical evaluation using the M5 competition data," International Journal of Production Economics, Elsevier, vol. 240(C).
    11. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    12. Wellens, Arnoud P. & Boute, Robert N. & Udenio, Maximiliano, 2024. "Simplifying tree-based methods for retail sales forecasting with explanatory variables," European Journal of Operational Research, Elsevier, vol. 314(2), pages 523-539.
    13. Olivares, Kin G. & Meetei, O. Nganba & Ma, Ruijun & Reddy, Rohan & Cao, Mengfei & Dicker, Lee, 2024. "Probabilistic hierarchical forecasting with deep Poisson mixtures," International Journal of Forecasting, Elsevier, vol. 40(2), pages 470-489.
    14. Ma, Shaohui & Fildes, Robert, 2020. "Forecasting third-party mobile payments with implications for customer flow prediction," International Journal of Forecasting, Elsevier, vol. 36(3), pages 739-760.
    15. Özgün Turgut & Florian Taube & Stefan Minner, 2018. "Data-driven retail inventory management with backroom effect," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 945-968, October.
    16. Kourentzes, Nikolaos & Athanasopoulos, George, 2021. "Elucidate structure in intermittent demand series," European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
    17. Theresa Maria Rausch & Tobias Albrecht & Daniel Baier, 2022. "Beyond the beaten paths of forecasting call center arrivals: on the use of dynamic harmonic regression with predictor variables," Journal of Business Economics, Springer, vol. 92(4), pages 675-706, May.
    18. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    19. Nikolopoulos, Konstantinos, 2021. "We need to talk about intermittent demand forecasting," European Journal of Operational Research, Elsevier, vol. 291(2), pages 549-559.
    20. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:231:y:2021:i:c:s0925527320301985. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.