When is the next order? Nowcasting channel inventories with Point-of-Sales data to predict the timing of retail orders
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ejor.2023.10.038
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Broekmeulen, Rob A.C.M. & Sternbeck, Michael G. & van Donselaar, Karel H. & Kuhn, Heinrich, 2017. "Decision support for selecting the optimal product unpacking location in a retail supply chain," European Journal of Operational Research, Elsevier, vol. 259(1), pages 84-99.
- Karel H. van Donselaar & Vishal Gaur & Tom van Woensel & Rob A. C. M. Broekmeulen & Jan C. Fransoo, 2010. "Ordering Behavior in Retail Stores and Implications for Automated Replenishment," Management Science, INFORMS, vol. 56(5), pages 766-784, May.
- Ali Caner Türkmen & Tim Januschowski & Yuyang Wang & Ali Taylan Cemgil, 2021. "Forecasting intermittent and sparse time series: A unified probabilistic framework via deep renewal processes," PLOS ONE, Public Library of Science, vol. 16(11), pages 1-26, November.
- Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
- Nikolopoulos, Konstantinos, 2021. "We need to talk about intermittent demand forecasting," European Journal of Operational Research, Elsevier, vol. 291(2), pages 549-559.
- Srinivasan Raghunathan, 2001. "Information Sharing in a Supply Chain: A Note on its Value when Demand Is Nonstationary," Management Science, INFORMS, vol. 47(4), pages 605-610, April.
- Hyndman, Rob J. & Koehler, Anne B. & Snyder, Ralph D. & Grose, Simone, 2002.
"A state space framework for automatic forecasting using exponential smoothing methods,"
International Journal of Forecasting, Elsevier, vol. 18(3), pages 439-454.
- Hyndman, R.J. & Koehler, A.B. & Snyder, R.D. & Grose, S., 2000. "A State Space Framework for Automatic Forecasting Using Exponential Smoothing Methods," Monash Econometrics and Business Statistics Working Papers 9/00, Monash University, Department of Econometrics and Business Statistics.
- Ketzenberg, Michael E. & Rosenzweig, Eve D. & Marucheck, Ann E. & Metters, Richard D., 2007. "A framework for the value of information in inventory replenishment," European Journal of Operational Research, Elsevier, vol. 182(3), pages 1230-1250, November.
- de Kok, A.G. & van Donselaar, K.H. & van Woensel, T., 2008. "A break-even analysis of RFID technology for inventory sensitive to shrinkage," International Journal of Production Economics, Elsevier, vol. 112(2), pages 521-531, April.
- George Kapetanios & Fotis Papailias, 2022. "Investigating the predictive ability of ONS big data‐based indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 252-258, March.
- Nesim Erkip & Warren H. Hausman & Steven Nahmias, 1990. "Optimal Centralized Ordering Policies in Multi-Echelon Inventory Systems with Correlated Demands," Management Science, INFORMS, vol. 36(3), pages 381-392, March.
- Kang, Jae-Hun & Kim, Yeong-Dae, 2012. "Inventory control in a two-level supply chain with risk pooling effect," International Journal of Production Economics, Elsevier, vol. 135(1), pages 116-124.
- Prak, Dennis & Teunter, Ruud & Babai, Mohamed Zied & Boylan, John E. & Syntetos, Aris, 2021. "Robust compound Poisson parameter estimation for inventory control," Omega, Elsevier, vol. 104(C).
- Romeijnders, Ward & Teunter, Ruud & van Jaarsveld, Willem, 2012. "A two-step method for forecasting spare parts demand using information on component repairs," European Journal of Operational Research, Elsevier, vol. 220(2), pages 386-393.
- Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
- Syntetos, A. A. & Boylan, J. E., 2001. "On the bias of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 71(1-3), pages 457-466, May.
- Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
- Joel H. Steckel & Sunil Gupta & Anirvan Banerji, 2004. "Supply Chain Decision Making: Will Shorter Cycle Times and Shared Point-of-Sale Information Necessarily Help?," Management Science, INFORMS, vol. 50(4), pages 458-464, April.
- Fan, Ti-Jun & Chang, Xiang-Yun & Gu, Chun-Hua & Yi, Jian-Jun & Deng, Sheng, 2014. "Benefits of RFID technology for reducing inventory shrinkage," International Journal of Production Economics, Elsevier, vol. 147(PC), pages 659-665.
- Syntetos, Aris A. & Zied Babai, M. & Gardner, Everette S., 2015. "Forecasting intermittent inventory demands: simple parametric methods vs. bootstrapping," Journal of Business Research, Elsevier, vol. 68(8), pages 1746-1752.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Broekmeulen, Rob A.C.M. & van Donselaar, Karel H., 2019. "Quantifying the potential to improve on food waste, freshness and sales for perishables in supermarkets," International Journal of Production Economics, Elsevier, vol. 209(C), pages 265-273.
- Vashkar Ghosh & Anand Paul & Lingjiong Zhu, 2022. "Stocking Under Random Demand and Product Variety: Exact Models and Heuristics," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1006-1032, March.
- Li Li & Yanfei Kang & Fotios Petropoulos & Feng Li, 2022. "Feature-based intermittent demand forecast combinations: bias, accuracy and inventory implications," Papers 2204.08283, arXiv.org, revised Aug 2022.
- Lingxiu Dong & Panos Kouvelis & Zhongjun Tian, 2009. "Dynamic Pricing and Inventory Control of Substitute Products," Manufacturing & Service Operations Management, INFORMS, vol. 11(2), pages 317-339, December.
- Hasni, M. & Aguir, M.S. & Babai, M.Z. & Jemai, Z., 2019. "On the performance of adjusted bootstrapping methods for intermittent demand forecasting," International Journal of Production Economics, Elsevier, vol. 216(C), pages 145-153.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
- Willemain, Thomas R. & Smart, Charles N. & Schwarz, Henry F., 2004. "A new approach to forecasting intermittent demand for service parts inventories," International Journal of Forecasting, Elsevier, vol. 20(3), pages 375-387.
- van Donselaar, K.H. & Peters, J. & de Jong, A. & Broekmeulen, R.A.C.M., 2016. "Analysis and forecasting of demand during promotions for perishable items," International Journal of Production Economics, Elsevier, vol. 172(C), pages 65-75.
- Hartzel, Kathleen S. & Wood, Charles A., 2017. "Factors that affect the improvement of demand forecast accuracy through point-of-sale reporting," European Journal of Operational Research, Elsevier, vol. 260(1), pages 171-182.
- Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
- Tian, Xin & Wang, Haoqing & E, Erjiang, 2021. "Forecasting intermittent demand for inventory management by retailers: A new approach," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
- Leven, Erik & Segerstedt, Anders, 2004. "Inventory control with a modified Croston procedure and Erlang distribution," International Journal of Production Economics, Elsevier, vol. 90(3), pages 361-367, August.
- Ali, Mohammad M. & Babai, Mohamed Zied & Boylan, John E. & Syntetos, A.A., 2017. "Supply chain forecasting when information is not shared," European Journal of Operational Research, Elsevier, vol. 260(3), pages 984-994.
- Mantrala, Murali K. & Levy, Michael & Kahn, Barbara E. & Fox, Edward J. & Gaidarev, Peter & Dankworth, Bill & Shah, Denish, 2009. "Why is Assortment Planning so Difficult for Retailers? A Framework and Research Agenda," Journal of Retailing, Elsevier, vol. 85(1), pages 71-83.
- Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Buzby, Jean C. & Wells, Hodan Farah & Axtman, Bruce & Mickey, Jana, 2009. "Supermarket Loss Estimates for Fresh Fruit, Vegetables, Meat, Poultry, and Seafood and Their Use in the ERS Loss-Adjusted Food Availability Data," Economic Information Bulletin 58313, United States Department of Agriculture, Economic Research Service.
- Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2022. "M5 accuracy competition: Results, findings, and conclusions," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1346-1364.
- Kathleen Cleeren & Frank Verboven & Marnik G. Dekimpe & Katrijn Gielens, 2010.
"Intra- and Interformat Competition Among Discounters and Supermarkets,"
Marketing Science, INFORMS, vol. 29(3), pages 456-473, 05-06.
- Verboven, Frank & Cleeren, Kathleen & Dekimpe, Marnik & Gielens, Katrijn, 2008. "Intra- and Inter-Format Competition Among Discounters and Supermarkets," CEPR Discussion Papers 6964, C.E.P.R. Discussion Papers.
- Nicole DeHoratius & Ananth Raman, 2008. "Inventory Record Inaccuracy: An Empirical Analysis," Management Science, INFORMS, vol. 54(4), pages 627-641, April.
- Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
- Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
- Lee G. Cooper & Penny Baron & Wayne Levy & Michael Swisher & Paris Gogos, 1999. "PromoCast™: A New Forecasting Method for Promotion Planning," Marketing Science, INFORMS, vol. 18(3), pages 301-316.
- Gérard P. Cachon & Marshall Fisher, 2000. "Supply Chain Inventory Management and the Value of Shared Information," Management Science, INFORMS, vol. 46(8), pages 1032-1048, August.
- Matthew J. Schneider & Sharan Jagpal & Sachin Gupta & Shaobo Li & Yan Yu, 2018. "A Flexible Method for Protecting Marketing Data: An Application to Point-of-Sale Data," Marketing Science, INFORMS, vol. 37(1), pages 153-171, January.
- Babai, M.Z. & Dallery, Y. & Boubaker, S. & Kalai, R., 2019. "A new method to forecast intermittent demand in the presence of inventory obsolescence," International Journal of Production Economics, Elsevier, vol. 209(C), pages 30-41.
- Trapero, Juan R. & Kourentzes, N. & Fildes, R., 2012. "Impact of information exchange on supplier forecasting performance," Omega, Elsevier, vol. 40(6), pages 738-747.
- Sucky, Eric, 2009. "The bullwhip effect in supply chains--An overestimated problem?," International Journal of Production Economics, Elsevier, vol. 118(1), pages 311-322, March.
- Sarlo, Rodrigo & Fernandes, Cristiano & Borenstein, Denis, 2023. "Lumpy and intermittent retail demand forecasts with score-driven models," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1146-1160.
- Syntetos, Aris A. & Nikolopoulos, Konstantinos & Boylan, John E. & Fildes, Robert & Goodwin, Paul, 2009. "The effects of integrating management judgement into intermittent demand forecasts," International Journal of Production Economics, Elsevier, vol. 118(1), pages 72-81, March.
- Porras, Eric & Dekker, Rommert, 2008. "An inventory control system for spare parts at a refinery: An empirical comparison of different re-order point methods," European Journal of Operational Research, Elsevier, vol. 184(1), pages 101-132, January.
- Hau L. Lee & V. Padmanabhan & Seungjin Whang, 1997. "Information Distortion in a Supply Chain: The Bullwhip Effect," Management Science, INFORMS, vol. 43(4), pages 546-558, April.
- Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
- Fleisch, Elgar & Tellkamp, Christian, 2005. "Inventory inaccuracy and supply chain performance: a simulation study of a retail supply chain," International Journal of Production Economics, Elsevier, vol. 95(3), pages 373-385, March.
- Raghunathan, Srinivasan, 2003. "Impact of demand correlation on the value of and incentives for information sharing in a supply chain," European Journal of Operational Research, Elsevier, vol. 146(3), pages 634-649, May.
- Willemain, Thomas R. & Smart, Charles N. & Shockor, Joseph H. & DeSautels, Philip A., 1994. "Forecasting intermittent demand in manufacturing: a comparative evaluation of Croston's method," International Journal of Forecasting, Elsevier, vol. 10(4), pages 529-538, December.
- Sternbeck, Michael G. & Kuhn, Heinrich, 2014. "An integrative approach to determine store delivery patterns in grocery retailing," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 70(C), pages 205-224.
- Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
- Williams, Brent D. & Waller, Matthew A. & Ahire, Sanjay & Ferrier, Gary D., 2014. "Predicting retailer orders with POS and order data: The inventory balance effect," European Journal of Operational Research, Elsevier, vol. 232(3), pages 593-600.
- R H Teunter & L Duncan, 2009. "Forecasting intermittent demand: a comparative study," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(3), pages 321-329, March.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- A A Syntetos & M Z Babai & Y Dallery & R Teunter, 2009. "Periodic control of intermittent demand items: theory and empirical analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(5), pages 611-618, May.
- Mahdi Abolghasemi & Bahman Rostami-Tabar & Aris Syntetos, 2023. "The value of point of sales information in upstream supply chain forecasting: an empirical investigation," International Journal of Production Research, Taylor & Francis Journals, vol. 61(7), pages 2162-2177, April.
- Chen, Jing & Dong, Ming & Rong, Ying & Yang, Liang, 2018. "Dynamic pricing for deteriorating products with menu cost," Omega, Elsevier, vol. 75(C), pages 13-26.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Prak, Dennis & Rogetzer, Patricia, 2022. "Timing intermittent demand with time-varying order-up-to levels," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1126-1136.
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
- Wang, Shengjie & Kang, Yanfei & Petropoulos, Fotios, 2024. "Combining probabilistic forecasts of intermittent demand," European Journal of Operational Research, Elsevier, vol. 315(3), pages 1038-1048.
- Tian, Xin & Wang, Haoqing & E, Erjiang, 2021. "Forecasting intermittent demand for inventory management by retailers: A new approach," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
- Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2019. "Retail forecasting: research and practice," MPRA Paper 89356, University Library of Munich, Germany.
- Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
- Kourentzes, Nikolaos & Athanasopoulos, George, 2021.
"Elucidate structure in intermittent demand series,"
European Journal of Operational Research, Elsevier, vol. 288(1), pages 141-152.
- Nikolaos Kourentzes & George Athanasopoulos, 2019. "Elucidate Structure in Intermittent Demand Series," Monash Econometrics and Business Statistics Working Papers 27/19, Monash University, Department of Econometrics and Business Statistics.
- Ducharme, Corey & Agard, Bruno & Trépanier, Martin, 2021. "Forecasting a customer's Next Time Under Safety Stock," International Journal of Production Economics, Elsevier, vol. 234(C).
- Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
- Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.
- Hu, Qiwei & Boylan, John E. & Chen, Huijing & Labib, Ashraf, 2018. "OR in spare parts management: A review," European Journal of Operational Research, Elsevier, vol. 266(2), pages 395-414.
- Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
- G. Peter Zhang & Yusen Xia & Maohua Xie, 2024. "Intermittent demand forecasting with transformer neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 1051-1072, August.
- Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
- Mariusz Doszyn, 2020. "Accuracy of Intermittent Demand Forecasting Systems in the Enterprise," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 912-930.
- Sarlo, Rodrigo & Fernandes, Cristiano & Borenstein, Denis, 2023. "Lumpy and intermittent retail demand forecasts with score-driven models," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1146-1160.
- Corey Ducharme & Bruno Agard & Martin Trépanier, 2024. "Improving demand forecasting for customers with missing downstream data in intermittent demand supply chains with supervised multivariate clustering," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 43(5), pages 1661-1681, August.
- Zhu, Sha & Dekker, Rommert & van Jaarsveld, Willem & Renjie, Rex Wang & Koning, Alex J., 2017. "An improved method for forecasting spare parts demand using extreme value theory," European Journal of Operational Research, Elsevier, vol. 261(1), pages 169-181.
More about this item
Keywords
Forecasting; Point-of-Sales; Information sharing; Intermittent demand; Food retailing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:315:y:2024:i:1:p:35-49. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.