IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v30y2014i4p928-933.html
   My bibliography  Save this article

Forecasting intermittent demand by hyperbolic-exponential smoothing

Author

Listed:
  • Prestwich, S.D.
  • Tarim, S.A.
  • Rossi, R.
  • Hnich, B.

Abstract

Croston’s method is generally viewed as being superior to exponential smoothing when the demand is intermittent, but it has the drawbacks of bias and an inability to deal with obsolescence, where the demand for an item ceases altogether. Several variants have been reported, some of which are unbiased on certain types of demand, but only one recent variant addresses the problem of obsolescence. We describe a new hybrid of Croston’s method and Bayesian inference called Hyperbolic-Exponential Smoothing, which is unbiased on non-intermittent and stochastic intermittent demand, decays hyperbolically when obsolescence occurs, and performs well in experiments.

Suggested Citation

  • Prestwich, S.D. & Tarim, S.A. & Rossi, R. & Hnich, B., 2014. "Forecasting intermittent demand by hyperbolic-exponential smoothing," International Journal of Forecasting, Elsevier, vol. 30(4), pages 928-933.
  • Handle: RePEc:eee:intfor:v:30:y:2014:i:4:p:928-933
    DOI: 10.1016/j.ijforecast.2014.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207014000491
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2014.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boylan, J.E. & Syntetos, A.A., 2007. "The accuracy of a Modified Croston procedure," International Journal of Production Economics, Elsevier, vol. 107(2), pages 511-517, June.
    2. Jan G. De Gooijer & Rob J. Hyndman, 2005. "25 Years of IIF Time Series Forecasting: A Selective Review," Monash Econometrics and Business Statistics Working Papers 12/05, Monash University, Department of Econometrics and Business Statistics.
    3. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    4. Leven, Erik & Segerstedt, Anders, 2004. "Inventory control with a modified Croston procedure and Erlang distribution," International Journal of Production Economics, Elsevier, vol. 90(3), pages 361-367, August.
    5. Syntetos, Aris A. & Boylan, John E., 2005. "The accuracy of intermittent demand estimates," International Journal of Forecasting, Elsevier, vol. 21(2), pages 303-314.
    6. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    7. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
    8. R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
    9. Stephan Kolassa & Wolfgang Schütz, 2007. "Advantages of the MAD/Mean Ratio over the MAPE," Foresight: The International Journal of Applied Forecasting, International Institute of Forecasters, issue 6, pages 40-43, Spring.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kamal Sanguri & Kampan Mukherjee, 2021. "Forecasting of intermittent demands under the risk of inventory obsolescence," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(6), pages 1054-1069, September.
    2. G. Peter Zhang & Yusen Xia & Maohua Xie, 2024. "Intermittent demand forecasting with transformer neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 1051-1072, August.
    3. Mariusz Doszyn, 2020. "Accuracy of Intermittent Demand Forecasting Systems in the Enterprise," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 912-930.
    4. Tian, Xin & Wang, Haoqing & E, Erjiang, 2021. "Forecasting intermittent demand for inventory management by retailers: A new approach," Journal of Retailing and Consumer Services, Elsevier, vol. 62(C).
    5. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    6. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    7. Jože Martin Rožanec & Blaž Fortuna & Dunja Mladenić, 2022. "Reframing Demand Forecasting: A Two-Fold Approach for Lumpy and Intermittent Demand," Sustainability, MDPI, vol. 14(15), pages 1-21, July.
    8. Babai, M.Z. & Dallery, Y. & Boubaker, S. & Kalai, R., 2019. "A new method to forecast intermittent demand in the presence of inventory obsolescence," International Journal of Production Economics, Elsevier, vol. 209(C), pages 30-41.
    9. Prak, Dennis & Rogetzer, Patricia, 2022. "Timing intermittent demand with time-varying order-up-to levels," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1126-1136.
    10. Murray, Paul W. & Agard, Bruno & Barajas, Marco A., 2018. "ASACT - Data preparation for forecasting: A method to substitute transaction data for unavailable product consumption data," International Journal of Production Economics, Elsevier, vol. 203(C), pages 264-275.
    11. Mariusz Doszyn, 2020. "Biasedness of Forecasts Errors for Intermittent Demand Data," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 1113-1127.
    12. Prestwich, S.D. & Tarim, S.A. & Rossi, R., 2021. "Intermittency and obsolescence: A Croston method with linear decay," International Journal of Forecasting, Elsevier, vol. 37(2), pages 708-715.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Prestwich, S.D. & Tarim, S.A. & Rossi, R., 2021. "Intermittency and obsolescence: A Croston method with linear decay," International Journal of Forecasting, Elsevier, vol. 37(2), pages 708-715.
    2. Li, Chongshou & Lim, Andrew, 2018. "A greedy aggregation–decomposition method for intermittent demand forecasting in fashion retailing," European Journal of Operational Research, Elsevier, vol. 269(3), pages 860-869.
    3. Pennings, Clint L.P. & van Dalen, Jan & van der Laan, Erwin A., 2017. "Exploiting elapsed time for managing intermittent demand for spare parts," European Journal of Operational Research, Elsevier, vol. 258(3), pages 958-969.
    4. Pinçe, Çerağ & Turrini, Laura & Meissner, Joern, 2021. "Intermittent demand forecasting for spare parts: A Critical review," Omega, Elsevier, vol. 105(C).
    5. Teunter, Ruud H. & Syntetos, Aris A. & Zied Babai, M., 2011. "Intermittent demand: Linking forecasting to inventory obsolescence," European Journal of Operational Research, Elsevier, vol. 214(3), pages 606-615, November.
    6. Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
    7. Kourentzes, Nikolaos, 2014. "On intermittent demand model optimisation and selection," International Journal of Production Economics, Elsevier, vol. 156(C), pages 180-190.
    8. Syntetos, Aris A. & Boylan, John E., 2010. "On the variance of intermittent demand estimates," International Journal of Production Economics, Elsevier, vol. 128(2), pages 546-555, December.
    9. Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
    10. Fildes, Robert & Ma, Shaohui & Kolassa, Stephan, 2022. "Retail forecasting: Research and practice," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1283-1318.
    11. Babai, M. Zied & Ali, Mohammad M. & Nikolopoulos, Konstantinos, 2012. "Impact of temporal aggregation on stock control performance of intermittent demand estimators: Empirical analysis," Omega, Elsevier, vol. 40(6), pages 713-721.
    12. Zied Babai, Mohamed & Syntetos, Aris & Teunter, Ruud, 2014. "Intermittent demand forecasting: An empirical study on accuracy and the risk of obsolescence," International Journal of Production Economics, Elsevier, vol. 157(C), pages 212-219.
    13. Mariusz Doszyn, 2020. "Accuracy of Intermittent Demand Forecasting Systems in the Enterprise," European Research Studies Journal, European Research Studies Journal, vol. 0(4), pages 912-930.
    14. Syntetos, A.A. & Babai, M.Z. & Davies, J. & Stephenson, D., 2010. "Forecasting and stock control: A study in a wholesaling context," International Journal of Production Economics, Elsevier, vol. 127(1), pages 103-111, September.
    15. Schlaich, Tim & Hoberg, Kai, 2024. "When is the next order? Nowcasting channel inventories with Point-of-Sales data to predict the timing of retail orders," European Journal of Operational Research, Elsevier, vol. 315(1), pages 35-49.
    16. Schneider, Matthew J. & Gupta, Sachin, 2016. "Forecasting sales of new and existing products using consumer reviews: A random projections approach," International Journal of Forecasting, Elsevier, vol. 32(2), pages 243-256.
    17. G. Peter Zhang & Yusen Xia & Maohua Xie, 2024. "Intermittent demand forecasting with transformer neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 1051-1072, August.
    18. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    19. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    20. Anderer, Matthias & Li, Feng, 2022. "Hierarchical forecasting with a top-down alignment of independent-level forecasts," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1405-1414.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:30:y:2014:i:4:p:928-933. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.