IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v62y2013icp39-51.html
   My bibliography  Save this article

Estimation of the volume under the ROC surface with three ordinal diagnostic categories

Author

Listed:
  • Kang, Le
  • Tian, Lili

Abstract

With three ordinal diagnostic categories, the most commonly used measure for the overall diagnostic accuracy is the volume under the ROC surface (VUS), which is the extension of the area under the ROC curve (AUC) for binary diagnostic outcomes. This article proposes two kernel smoothing based approaches for estimation of the VUS. In an extensive simulation study, the proposed estimators are compared with the existing parametric and nonparametric estimators in terms of bias and root mean square error. A real data example of 203 participants from a cohort study for the detection of Glycan biomarkers for liver cancer is discussed.

Suggested Citation

  • Kang, Le & Tian, Lili, 2013. "Estimation of the volume under the ROC surface with three ordinal diagnostic categories," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 39-51.
  • Handle: RePEc:eee:csdana:v:62:y:2013:i:c:p:39-51
    DOI: 10.1016/j.csda.2013.01.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947313000054
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2013.01.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hall, Peter G. & Hyndman, Rob J., 2003. "Improved methods for bandwidth selection when estimating ROC curves," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
    2. Kelly Zou & W. J. Hall, 2000. "Two transformation models for estimating an ROC curve derived from continuous data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 27(5), pages 621-631.
    3. Lloyd, Chris J. & Yong, Zhou, 1999. "Kernel estimators of the ROC curve are better than empirical," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 221-228, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khanh To Duc & Monica Chiogna & Gianfranco Adimari, 2019. "Estimation of the volume under the ROC surface in presence of nonignorable verification bias," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 28(4), pages 695-722, December.
    2. Zhu, Rui & Ghosal, Subhashis, 2019. "Bayesian Semiparametric ROC surface estimation under verification bias," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 40-52.
    3. Coolen-Maturi, Tahani & Elkhafifi, Faiza F. & Coolen, Frank P.A., 2014. "Three-group ROC analysis: A nonparametric predictive approach," Computational Statistics & Data Analysis, Elsevier, vol. 78(C), pages 69-81.
    4. Guogen Shan & Hua Zhang & Tao Jiang & Hanna Peterson & Daniel Young & Changxing Ma, 2016. "Exact p-Values for Simon’s Two-Stage Designs in Clinical Trials," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 8(2), pages 351-357, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alicja Jokiel-Rokita & Rafał Topolnicki, 2019. "Minimum distance estimation of the binormal ROC curve," Statistical Papers, Springer, vol. 60(6), pages 2161-2183, December.
    2. Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
    3. Rufibach Kaspar, 2012. "A Smooth ROC Curve Estimator Based on Log-Concave Density Estimates," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, April.
    4. Cheam, Amay S.M. & McNicholas, Paul D., 2016. "Modelling receiver operating characteristic curves using Gaussian mixtures," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 192-208.
    5. Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
    6. Y. Huang & M. S. Pepe, 2009. "A Parametric ROC Model-Based Approach for Evaluating the Predictiveness of Continuous Markers in Case–Control Studies," Biometrics, The International Biometric Society, vol. 65(4), pages 1133-1144, December.
    7. Wang, Dan & Tian, Lili, 2017. "Parametric methods for confidence interval estimation of overlap coefficients," Computational Statistics & Data Analysis, Elsevier, vol. 106(C), pages 12-26.
    8. Lopez-de-Ullibarri, Ignacio & Cao, Ricardo & Cadarso-Suarez, Carmen & Lado, Maria J., 2008. "Nonparametric estimation of conditional ROC curves: Application to discrimination tasks in computerized detection of early breast cancer," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2623-2631, January.
    9. Chen, Xiwei & Vexler, Albert & Markatou, Marianthi, 2015. "Empirical likelihood ratio confidence interval estimation of best linear combinations of biomarkers," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 186-198.
    10. Lloyd, Chris J., 2002. "Estimation of a convex ROC curve," Statistics & Probability Letters, Elsevier, vol. 59(1), pages 99-111, August.
    11. Zhongkai Liu & Howard D. Bondell, 2019. "Binormal Precision–Recall Curves for Optimal Classification of Imbalanced Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(1), pages 141-161, April.
    12. Arís Fanjul-Hevia & Wenceslao González-Manteiga, 2018. "A comparative study of methods for testing the equality of two or more ROC curves," Computational Statistics, Springer, vol. 33(1), pages 357-377, March.
    13. Douglas Mossman & Hongying Peng, 2016. "Using Dual Beta Distributions to Create “Proper†ROC Curves Based on Rating Category Data," Medical Decision Making, , vol. 36(3), pages 349-365, April.
    14. Kelly Zou & W. J. Hall, 2002. "Semiparametric and parametric transformation models for comparing diagnostic markers with paired design," Journal of Applied Statistics, Taylor & Francis Journals, vol. 29(6), pages 803-816.
    15. Funke, Benedikt & Palmes, Christian, 2017. "A note on estimating cumulative distribution functions by the use of convolution power kernels," Statistics & Probability Letters, Elsevier, vol. 121(C), pages 90-98.
    16. Hall, Peter G. & Hyndman, Rob J., 2003. "Improved methods for bandwidth selection when estimating ROC curves," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
    17. Kaushik Ghosh & Ram Tiwari, 2007. "Empirical process approach to some two-sample problems based on ranked set samples," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 59(4), pages 757-787, December.
    18. Zhang, Biao, 2006. "A semiparametric hypothesis testing procedure for the ROC curve area under a density ratio model," Computational Statistics & Data Analysis, Elsevier, vol. 50(7), pages 1855-1876, April.
    19. Yousef, Waleed A. & Kundu, Subrata & Wagner, Robert F., 2009. "Nonparametric estimation of the threshold at an operating point on the ROC curve," Computational Statistics & Data Analysis, Elsevier, vol. 53(12), pages 4370-4383, October.
    20. Chang, Yuan-chin Ivan & Park, Eunsik, 2009. "Constructing the best linear combination of diagnostic markers via sequential sampling," Statistics & Probability Letters, Elsevier, vol. 79(18), pages 1921-1927, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:62:y:2013:i:c:p:39-51. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.