IDEAS home Printed from https://ideas.repec.org/p/yon/wpaper/2017rwp-102.html
   My bibliography  Save this paper

Nonparametric forecasting with one-sided kernel adopting pseudo one-step ahead data

Author

Listed:
  • Jungwoo Kim

    (Yonsei University)

  • Joocheol Kim

    (Yonsei University)

Abstract

A new nonparametric forecasting using one-sided kernel is proposed via adopting pseudo one-step ahead data. Adopting pseudo one-step data is inspired from the difference between training error and test error, which motivates us to reduce test error minimization problem to training error minimization problem. The theoretical basis and the numerical justification of the new approach are presented.

Suggested Citation

  • Jungwoo Kim & Joocheol Kim, 2017. "Nonparametric forecasting with one-sided kernel adopting pseudo one-step ahead data," Working papers 2017rwp-102, Yonsei University, Yonsei Economics Research Institute.
  • Handle: RePEc:yon:wpaper:2017rwp-102
    as

    Download full text from publisher

    File URL: http://121.254.254.220/repec/yon/wpaper/2017rwp-102.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Azhong Ye & Rob J Hyndman & Zinai Li, 2006. "Local Linear Multivariate Regression with Variable Bandwidth in the Presence of Heteroscedasticity," Monash Econometrics and Business Statistics Working Papers 8/06, Monash University, Department of Econometrics and Business Statistics.
    2. I. Gijbels & A. Pope & M. P. Wand, 1999. "Understanding exponential smoothing via kernel regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(1), pages 39-50.
    3. Hansen, Bruce E, 1995. "Regression with Nonstationary Volatility," Econometrica, Econometric Society, vol. 63(5), pages 1113-1132, September.
    4. Wolfgang Härdle & Helmut Lütkepohl & Rong Chen, 1997. "A Review of Nonparametric Time Series Analysis," International Statistical Review, International Statistical Institute, vol. 65(1), pages 49-72, April.
    5. Lejeune, Michel & Sarda, Pascal, 1992. "Smooth estimators of distribution and density functions," Computational Statistics & Data Analysis, Elsevier, vol. 14(4), pages 457-471, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boswijk, H. P. & Zu, Y., 2013. "Testing for Cointegration with Nonstationary Volatility," Working Papers 13/08, Department of Economics, City University London.
    2. Ayse Yilmaz & Ufuk Yolcu, 2022. "Dendritic neuron model neural network trained by modified particle swarm optimization for time‐series forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 793-809, July.
    3. Patrick Saart & Jiti Gao & Nam Hyun Kim, 2014. "Semiparametric methods in nonlinear time series analysis: a selective review," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 26(1), pages 141-169, March.
    4. Reham Alhindawi & Yousef Abu Nahleh & Arun Kumar & Nirajan Shiwakoti, 2020. "Projection of Greenhouse Gas Emissions for the Road Transport Sector Based on Multivariate Regression and the Double Exponential Smoothing Model," Sustainability, MDPI, vol. 12(21), pages 1-18, November.
    5. Ouimet, Frédéric & Tolosana-Delgado, Raimon, 2022. "Asymptotic properties of Dirichlet kernel density estimators," Journal of Multivariate Analysis, Elsevier, vol. 187(C).
    6. Ralf Becker & Adam Clements & Robert O'Neill, 2018. "A Multivariate Kernel Approach to Forecasting the Variance Covariance of Stock Market Returns," Econometrics, MDPI, vol. 6(1), pages 1-27, February.
    7. Rolf Tschernig & Lijian Yang, 2000. "Nonparametric Estimation of Generalized Impulse Response Functions," Econometric Society World Congress 2000 Contributed Papers 1417, Econometric Society.
    8. Westerlund, Joakim, 2014. "On the choice of test for a unit root when the errors are conditionally heteroskedastic," Computational Statistics & Data Analysis, Elsevier, vol. 69(C), pages 40-53.
    9. Bouezmarni, T. & Mesfioui, M. & Rolin, J.M., 2007. "L1-rate of convergence of smoothed histogram," Statistics & Probability Letters, Elsevier, vol. 77(14), pages 1497-1504, August.
    10. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    11. Nikolaos Kourogenis, 2015. "Polynomial Trends, Nonstationary Volatility and the Eicker-White Asymptotic Variance Estimator," Economics Bulletin, AccessEcon, vol. 35(3), pages 1675-1680.
    12. Mohitosh Kejriwal & Xuewen Yu & Pierre Perron, 2020. "Bootstrap procedures for detecting multiple persistence shifts in heteroskedastic time series," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(5), pages 676-690, September.
    13. Ralf Becker & Adam Clements & Robert O'Neill, 2010. "A Kernel Technique for Forecasting the Variance-Covariance Matrix," Centre for Growth and Business Cycle Research Discussion Paper Series 151, Economics, The University of Manchester.
    14. Ruey-Ching Hwang & K. F. Cheng & Jack C. Lee, 2007. "A semiparametric method for predicting bankruptcy," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 26(5), pages 317-342.
    15. Jens Perch Nielsen & Carsten Tanggaard & M.C. Jones, 2007. "Local Linear Density Estimation for Filtered Survival Data, with Bias Correction," CREATES Research Papers 2007-13, Department of Economics and Business Economics, Aarhus University.
    16. Boswijk, H. Peter & Cavaliere, Giuseppe & Georgiev, Iliyan & Rahbek, Anders, 2021. "Bootstrapping non-stationary stochastic volatility," Journal of Econometrics, Elsevier, vol. 224(1), pages 161-180.
    17. Joachim Grammig & Reinhard Hujer & Stefan Kokot, 2002. "Tackling Boundary Effects in Nonparametric Estimation of Intra-Day Liquidity Measures," Computational Statistics, Springer, vol. 17(2), pages 233-249, July.
    18. Bai, Zhidong & Hui, Yongchang & Wong, Wing-Keung, 2012. "New Non-Linearity Test to Circumvent the Limitation of Volterra Expansion," MPRA Paper 41872, University Library of Munich, Germany.
    19. BOUEZMARNI, Taoufik & ROMBOUTS, Jeroen V.K., 2007. "Nonparametric density estimation for multivariate bounded data," LIDAM Discussion Papers CORE 2007065, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. É. Youndjé, 2022. "L1 Properties of the Nadaraya Quantile Estimator," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 867-884, August.

    More about this item

    Keywords

    Nonparametric methods; Time series; One-sided kernel; Local regression; Exponential smoothing;
    All these keywords.

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:yon:wpaper:2017rwp-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: YERI (email available below). General contact details of provider: https://edirc.repec.org/data/eryonkr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.