IDEAS home Printed from https://ideas.repec.org/a/abk/jajeba/ajebasp.2010.377.383.html
   My bibliography  Save this article

Forecasting Daily Demand in Cash Supply Chains

Author

Listed:
  • Michael Wagner

Abstract

Problem statement: Previous studies focused on explaining the long run determinants of currency demand offering limited insight into the short-run determinants and co-variability of daily demand in cash supply chains. Approach: This study contrasted competing techniques of forecasting daily demand in cash supply chains in order to determine the overall performance and the potential of joint forecasting for integrated planning. A joint forecasting approach was compared with wellestablished causal forecasting techniques, namely, a vector time series model and a seasonal ARIMA model using simple methods as benchmarks. Evaluation was based on multiple time series obtained from mid-size European bank with forecasting horizons of up to 28 days. Forecasting accuracy was measured using the mean absolute percentage error. Results: The seasonal ARIMA model resulted in a higher forecasting accuracy compared to the vector time series model. Variability in demand was mainly attributed to the day-of-the-week effect. Co-variability is captured by seasonality and calendar effects limiting the potential of joint forecasting. Cumulative forecasts for periods of 14 days are very robust with mean percentage errors of approximately two percent. Conclusion: The results confirmed the benefit of advanced forecasting techniques for daily forecasts. However, the study suggested that the role of information sharing is limited to coordination of replenishments across the cash supply chain and does not yield more accurate forecasts based on joint forecasting.

Suggested Citation

  • Michael Wagner, 2010. "Forecasting Daily Demand in Cash Supply Chains," American Journal of Economics and Business Administration, Science Publications, vol. 2(4), pages 377-383, November.
  • Handle: RePEc:abk:jajeba:ajebasp.2010.377.383
    DOI: 10.3844/ajebasp.2010.377.383
    as

    Download full text from publisher

    File URL: https://thescipub.com/pdf/ajebasp.2010.377.383.pdf
    Download Restriction: no

    File URL: https://thescipub.com/abstract/ajebasp.2010.377.383
    Download Restriction: no

    File URL: https://libkey.io/10.3844/ajebasp.2010.377.383?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yossi Aviv, 2002. "Gaining Benefits from Joint Forecasting and Replenishment Processes: The Case of Auto-Correlated Demand," Manufacturing & Service Operations Management, INFORMS, vol. 4(1), pages 55-74, December.
    2. repec:bla:jorssc:v:57:y:2008:i:1:p:43-59 is not listed on IDEAS
    3. Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2009. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 194-217.
    4. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    5. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    6. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521562607.
    7. Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521565882.
    8. Apostolos Serletis, 2007. "The Demand for Money," Springer Books, Springer, edition 0, number 978-0-387-71727-2, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alexandros E. Milionis & Hayette Gatfaoui, 2010. "Special Issue for the 6 th International Conference on Applied Financial Economics, Samos, Greece, 2-4 July 2009," American Journal of Economics and Business Administration, Science Publications, vol. 2(4), pages 339-340, November.
    2. Ntebogang Dinah Moroke, 2014. "The robustness and accuracy of Box-Jenkins ARIMA in modeling and forecasting household debt in South Africa," Journal of Economics and Behavioral Studies, AMH International, vol. 6(9), pages 748-759.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gaglianone, Wagner Piazza & Guillén, Osmani Teixeira de Carvalho & Figueiredo, Francisco Marcos Rodrigues, 2018. "Estimating inflation persistence by quantile autoregression with quantile-specific unit roots," Economic Modelling, Elsevier, vol. 73(C), pages 407-430.
    2. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    3. Oguzhan Cepni & I. Ethem Guney & Norman R. Swanson, 2020. "Forecasting and nowcasting emerging market GDP growth rates: The role of latent global economic policy uncertainty and macroeconomic data surprise factors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(1), pages 18-36, January.
    4. Wagner Piazza Gaglianone & Osmani Teixeira de Carvalho Guillén & Francisco Marcos Rodrigues Figueiredo, 2015. "Local Unit Root and Inflationary Inertia in Brazil," Working Papers Series 406, Central Bank of Brazil, Research Department.
    5. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    6. Luetkepohl Helmut & Xu Fang, 2011. "Forecasting Annual Inflation with Seasonal Monthly Data: Using Levels versus Logs of the Underlying Price Index," Journal of Time Series Econometrics, De Gruyter, vol. 3(1), pages 1-23, February.
    7. Pami Dua & Lokendra Kumawat, 2005. "Modelling and Forecasting Seasonality in Indian Macroeconomic Time Series," Working papers 136, Centre for Development Economics, Delhi School of Economics.
    8. Artis, Michael & Nachane, Dilip M & Hoffmann, Mathias & Clavel, Jose Garcia, 2007. "Analyzing Strongly Periodic Series in the Frequency Domain: A Comparison of Alternative Approaches with Applications," CEPR Discussion Papers 6517, C.E.P.R. Discussion Papers.
    9. Franses, Philip Hans & van Dijk, Dick, 2005. "The forecasting performance of various models for seasonality and nonlinearity for quarterly industrial production," International Journal of Forecasting, Elsevier, vol. 21(1), pages 87-102.
    10. Chernov, Mikhail & Mueller, Philippe, 2012. "The term structure of inflation expectations," Journal of Financial Economics, Elsevier, vol. 106(2), pages 367-394.
    11. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
    12. Capistrán Carlos & Constandse Christian & Ramos Francia Manuel, 2009. "Using Seasonal Models to Forecast Short-Run Inflation in Mexico," Working Papers 2009-05, Banco de México.
    13. Alexander Vosseler & Enzo Weber, 2018. "Forecasting seasonal time series data: a Bayesian model averaging approach," Computational Statistics, Springer, vol. 33(4), pages 1733-1765, December.
    14. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521817707.
    15. Swanson, Norman R. & Urbach, Richard, 2015. "Prediction and simulation using simple models characterized by nonstationarity and seasonality," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 312-323.
    16. Ollech, Daniel, 2018. "Seasonal adjustment of daily time series," Discussion Papers 41/2018, Deutsche Bundesbank.
    17. Capistrán, Carlos & Constandse, Christian & Ramos-Francia, Manuel, 2010. "Multi-horizon inflation forecasts using disaggregated data," Economic Modelling, Elsevier, vol. 27(3), pages 666-677, May.
    18. Franses,Philip Hans & Dijk,Dick van & Opschoor,Anne, 2014. "Time Series Models for Business and Economic Forecasting," Cambridge Books, Cambridge University Press, number 9780521520911.
    19. Harvey, David I. & van Dijk, Dick, 2006. "Sample size, lag order and critical values of seasonal unit root tests," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2734-2751, June.
    20. Christoffersen, Peter & Ghysels, Eric & Swanson, Norman R., 2002. "Let's get "real" about using economic data," Journal of Empirical Finance, Elsevier, vol. 9(3), pages 343-360, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:abk:jajeba:ajebasp.2010.377.383. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Jeffery Daniels (email available below). General contact details of provider: https://thescipub.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.