IDEAS home Printed from https://ideas.repec.org/p/msh/ebswps/2005-1.html
   My bibliography  Save this paper

Rating Forecasts for Television Programs

Author

Listed:
  • Denny Meyer
  • Rob J. Hyndman

Abstract

This paper investigates the effect of aggregation and non-linearity in relation to television rating forecasts. Several linear models for aggregated and disaggregated television viewing have appeared in the literature. The current analysis extends this work using an empirical approach. We compare the accuracy of population rating models, segment rating models and individual viewing behaviour models. Linear and non-linear models are fitted using regression, decision trees and neural networks, with a two-stage procedure being used to model network choice and viewing time for the individual viewing behaviour model. The most accurate forecast results are obtained from the non-linear segment rating models.

Suggested Citation

  • Denny Meyer & Rob J. Hyndman, 2005. "Rating Forecasts for Television Programs," Monash Econometrics and Business Statistics Working Papers 1/05, Monash University, Department of Econometrics and Business Statistics.
  • Handle: RePEc:msh:ebswps:2005-1
    as

    Download full text from publisher

    File URL: http://www.buseco.monash.edu.au/ebs/pubs/wpapers/2005/wp1-05.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. K. Lee & M. H. Pesaran & R. G. Pierse, 1988. "Aggregation Bias and Labor Demand Equations for the U.K. Economy," UCLA Economics Working Papers 492, UCLA Department of Economics.
    2. Srinivas K. Reddy & Jay E. Aronson & Antonie Stam, 1998. "SPOT: Scheduling Programs Optimally for Television," Management Science, INFORMS, vol. 44(1), pages 83-102, January.
    3. Shumway, C. Richard & Davis, George C., 2001. "Does consistent aggregation really matter?," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 45(2), pages 1-34.
    4. Zellner, Arnold & Tobias, Justin, 1998. "A Note on Aggregation, Disaggregation and Forecasting Performance," CUDARE Working Papers 198677, University of California, Berkeley, Department of Agricultural and Resource Economics.
    5. Swann, P. & Tavakoli, M., 1994. "An econometric analysis of television viewing and the welfare economics of introducing an additional channel in the UK," Information Economics and Policy, Elsevier, vol. 6(1), pages 25-51, March.
    6. Fred S. Zufryden, 1973. "Media Scheduling: A Stochastic Dynamic Model Approach," Management Science, INFORMS, vol. 19(12), pages 1395-1406, August.
    7. Chan, Ngai Hang, 1999. "The Et Interview: Professor George C. Tiao," Econometric Theory, Cambridge University Press, vol. 15(03), pages 389-424, June.
    8. Clive Granger & Tae-Hwy Lee, 1999. "The effect of aggregation on nonlinearity," Econometric Reviews, Taylor & Francis Journals, vol. 18(3), pages 259-269.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Keita Kinjo & Takeshi Ebina, 2015. "State-Dependent Choice Model for TV Programs with Externality: Analysis of Viewing Behavior," Journal of Media Economics, Taylor & Francis Journals, vol. 28(1), pages 20-40, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. SILVESTRINI, Andrea & VEREDAS, David, 2005. "Temporal aggregation of univariate linear time series models," LIDAM Discussion Papers CORE 2005059, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    3. Pavlidis, Efthymios & Martínez-García, Enrique & Grossman, Valerie, 2019. "Detecting periods of exuberance: A look at the role of aggregation with an application to house prices," Economic Modelling, Elsevier, vol. 80(C), pages 87-102.
    4. Li, Han & Hyndman, Rob J., 2021. "Assessing mortality inequality in the U.S.: What can be said about the future?," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 152-162.
    5. Giacomini, Raffaella & Granger, Clive W. J., 2004. "Aggregation of space-time processes," Journal of Econometrics, Elsevier, vol. 118(1-2), pages 7-26.
    6. Katja Heinisch & Rolf Scheufele, 2018. "Bottom-up or direct? Forecasting German GDP in a data-rich environment," Empirical Economics, Springer, vol. 54(2), pages 705-745, March.
    7. Bollapragada, Srinivas & Bussieck, Michael & Mallik, Suman, 2002. "Scheduling Commercial Videotapes in Broadcast Television," Working Papers 02-0127, University of Illinois at Urbana-Champaign, College of Business.
    8. Kim, Kun Ho, 2011. "Density forecasting through disaggregation," International Journal of Forecasting, Elsevier, vol. 27(2), pages 394-412.
    9. Li, Han & Chen, Hua, 2024. "Hierarchical mortality forecasting with EVT tails: An application to solvency capital requirement," International Journal of Forecasting, Elsevier, vol. 40(2), pages 549-563.
    10. Hallberg, Daniel & Johansson, Per, 2002. "Turnover and Price in the Housing Market: Causation, Association or Independence?," Working Paper Series 2002:12, Uppsala University, Department of Economics.
    11. Andalón, Mabel & Gibson, John, 2018. "The ‘soda tax’ is unlikely to make Mexicans lighter or healthier: New evidence on biases in elasticities of demand for soda," MPRA Paper 86370, University Library of Munich, Germany.
    12. Lopes, Artur Silva & Zsurkis, Gabriel Florin, 2017. "Are linear models really unuseful to describe business cycle data?," Economics Discussion Papers 2017-5, Kiel Institute for the World Economy (IfW Kiel).
    13. Mabel Andalon & John Gibson, 2017. "The 'Soda Tax' is Unlikely to Make Mexicans Lighter: New Evidence on Biases in Elasticities of Demand for Soda," Working Papers in Economics 17/07, University of Waikato.
    14. John Gibson & Bonggeun Kim, 2013. "Testing Hicksian Separability Over Space," Working Papers in Economics 13/07, University of Waikato.
    15. Monteforte, Libero, 2007. "Aggregation bias in macro models: Does it matter for the euro area?," Economic Modelling, Elsevier, vol. 24(2), pages 236-261, March.
    16. Li, Wenying & Zhen, Chen, 2017. "A Reassessment of Product Aggregation Bias in Demand Analysis: An Application to the U.S. Meat Market," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258197, Agricultural and Applied Economics Association.
    17. Han Lin Shang, 2017. "Reconciling Forecasts of Infant Mortality Rates at National and Sub-National Levels: Grouped Time-Series Methods," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 36(1), pages 55-84, February.
    18. Athanasopoulos, George & Ahmed, Roman A. & Hyndman, Rob J., 2009. "Hierarchical forecasts for Australian domestic tourism," International Journal of Forecasting, Elsevier, vol. 25(1), pages 146-166.
    19. Danaher, Peter J. & Dagger, Tracey S. & Smith, Michael S., 2011. "Forecasting television ratings," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1215-1240, October.
    20. Giovanni Giallombardo & Houyuan Jiang & Giovanna Miglionico, 2016. "New Formulations for the Conflict Resolution Problem in the Scheduling of Television Commercials," Operations Research, INFORMS, vol. 64(4), pages 838-848, August.

    More about this item

    Keywords

    Decision Trees; Disaggregation; Discrete Choice Models; Neural Networks; Rating Benchmarks;
    All these keywords.

    JEL classification:

    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation
    • C35 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions
    • M37 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Marketing and Advertising - - - Advertising

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:msh:ebswps:2005-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Professor Xibin Zhang (email available below). General contact details of provider: https://edirc.repec.org/data/dxmonau.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.