IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i11p12361-13193d59081.html
   My bibliography  Save this article

A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting

Author

Listed:
  • Francisco Martínez-Álvarez

    (Division of Computer Science, Universidad Pablo de Olavide, ES-41013 Seville, Spain
    These authors contributed equally to this work.)

  • Alicia Troncoso

    (Division of Computer Science, Universidad Pablo de Olavide, ES-41013 Seville, Spain
    These authors contributed equally to this work.)

  • Gualberto Asencio-Cortés

    (Division of Computer Science, Universidad Pablo de Olavide, ES-41013 Seville, Spain)

  • José C. Riquelme

    (Department of Computer Science, University of Seville, 41012 Seville, Spain)

Abstract

Data mining has become an essential tool during the last decade to analyze large sets of data. The variety of techniques it includes and the successful results obtained in many application fields, make this family of approaches powerful and widely used. In particular, this work explores the application of these techniques to time series forecasting. Although classical statistical-based methods provides reasonably good results, the result of the application of data mining outperforms those of classical ones. Hence, this work faces two main challenges: (i) to provide a compact mathematical formulation of the mainly used techniques; (ii) to review the latest works of time series forecasting and, as case study, those related to electricity price and demand markets.

Suggested Citation

  • Francisco Martínez-Álvarez & Alicia Troncoso & Gualberto Asencio-Cortés & José C. Riquelme, 2015. "A Survey on Data Mining Techniques Applied to Electricity-Related Time Series Forecasting," Energies, MDPI, vol. 8(11), pages 1-32, November.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12361-13193:d:59081
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/11/12361/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/11/12361/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ying-Yi Hong & Ching-Ping Wu, 2012. "Day-Ahead Electricity Price Forecasting Using a Hybrid Principal Component Analysis Network," Energies, MDPI, vol. 5(11), pages 1-15, November.
    2. Minxian Yang, 2002. "Lag length and mean break in stationary VAR models," Econometrics Journal, Royal Economic Society, vol. 5(2), pages 374-387, June.
    3. Wu, Berlin & Chang, Chih-Li, 2002. "Using genetic algorithms to parameters (d,r) estimation for threshold autoregressive models," Computational Statistics & Data Analysis, Elsevier, vol. 38(3), pages 315-330, January.
    4. Fred Collopy & J. Scott Armstrong, 1992. "Rule-Based Forecasting: Development and Validation of an Expert Systems Approach to Combining Time Series Extrapolations," Management Science, INFORMS, vol. 38(10), pages 1394-1414, October.
    5. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    6. Sergey Voronin & Jarmo Partanen, 2013. "Price Forecasting in the Day-Ahead Energy Market by an Iterative Method with Separate Normal Price and Price Spike Frameworks," Energies, MDPI, vol. 6(11), pages 1-24, November.
    7. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    8. Tan, Zhongfu & Zhang, Jinliang & Wang, Jianhui & Xu, Jun, 2010. "Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models," Applied Energy, Elsevier, vol. 87(11), pages 3606-3610, November.
    9. F J Nogales & A J Conejo, 2006. "Electricity price forecasting through transfer function models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 350-356, April.
    10. George Kapetanios, 2002. "Measuring Conditional Persistence in Time Series," Working Papers 474, Queen Mary University of London, School of Economics and Finance.
    11. Castelli, Mauro & Vanneschi, Leonardo & De Felice, Matteo, 2015. "Forecasting short-term electricity consumption using a semantics-based genetic programming framework: The South Italy case," Energy Economics, Elsevier, vol. 47(C), pages 37-41.
    12. Weron, Rafal & Misiorek, Adam, 2008. "Forecasting spot electricity prices: A comparison of parametric and semiparametric time series models," International Journal of Forecasting, Elsevier, vol. 24(4), pages 744-763.
    13. Rafal Weron & Adam Misiorek, 2005. "Forecasting Spot Electricity Prices With Time Series Models," Econometrics 0504001, University Library of Munich, Germany.
    14. Taylor, James W., 2006. "Density forecasting for the efficient balancing of the generation and consumption of electricity," International Journal of Forecasting, Elsevier, vol. 22(4), pages 707-724.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohan, Neethu & Soman, K.P. & Sachin Kumar, S., 2018. "A data-driven strategy for short-term electric load forecasting using dynamic mode decomposition model," Applied Energy, Elsevier, vol. 232(C), pages 229-244.
    2. Bastos, Guadalupe & García-Martos, Carolina, 2017. "Electricity prices forecasting by averaging dynamic factor models," DES - Working Papers. Statistics and Econometrics. WS 24028, Universidad Carlos III de Madrid. Departamento de Estadística.
    3. Javier Pórtoles & Camino González & Javier M. Moguerza, 2018. "Electricity Price Forecasting with Dynamic Trees: A Benchmark Against the Random Forest Approach," Energies, MDPI, vol. 11(6), pages 1-21, June.
    4. Chou, Jui-Sheng & Tran, Duc-Son, 2018. "Forecasting energy consumption time series using machine learning techniques based on usage patterns of residential householders," Energy, Elsevier, vol. 165(PB), pages 709-726.
    5. Andrés M. Alonso & Guadalupe Bastos & Carolina García-Martos, 2016. "Electricity Price Forecasting by Averaging Dynamic Factor Models," Energies, MDPI, vol. 9(8), pages 1-21, July.
    6. Mashud Rana & Irena Koprinska, 2016. "Neural Network Ensemble Based Approach for 2D-Interval Prediction of Solar Photovoltaic Power," Energies, MDPI, vol. 9(10), pages 1-17, October.
    7. Xiaoyu Zhang & Zhe Shu & Rui Wang & Tao Zhang & Yabing Zha, 2018. "Short-Term Load Interval Prediction Using a Deep Belief Network," Energies, MDPI, vol. 11(10), pages 1-18, October.
    8. Stéfano Frizzo Stefenon & Roberto Zanetti Freire & Leandro dos Santos Coelho & Luiz Henrique Meyer & Rafael Bartnik Grebogi & William Gouvêa Buratto & Ademir Nied, 2020. "Electrical Insulator Fault Forecasting Based on a Wavelet Neuro-Fuzzy System," Energies, MDPI, vol. 13(2), pages 1-19, January.
    9. Mustafa Akpinar & Nejat Yumusak, 2016. "Year Ahead Demand Forecast of City Natural Gas Using Seasonal Time Series Methods," Energies, MDPI, vol. 9(9), pages 1-17, September.
    10. Witold Orzeszko, 2021. "Nonlinear Causality between Crude Oil Prices and Exchange Rates: Evidence and Forecasting," Energies, MDPI, vol. 14(19), pages 1-16, September.
    11. Mo, Jixian & Gao, Ruobin & Fai Yuen, Kum & Bai, Xiwen, 2024. "Predictive analysis of sell-and-purchase shipping market: A PIMSE approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    12. João Vitor Leme & Wallace Casaca & Marilaine Colnago & Maurício Araújo Dias, 2020. "Towards Assessing the Electricity Demand in Brazil: Data-Driven Analysis and Ensemble Learning Models," Energies, MDPI, vol. 13(6), pages 1-20, March.
    13. Anam-Nawaz Khan & Naeem Iqbal & Atif Rizwan & Rashid Ahmad & Do-Hyeun Kim, 2021. "An Ensemble Energy Consumption Forecasting Model Based on Spatial-Temporal Clustering Analysis in Residential Buildings," Energies, MDPI, vol. 14(11), pages 1-25, May.
    14. Chengdong Li & Zixiang Ding & Dongbin Zhao & Jianqiang Yi & Guiqing Zhang, 2017. "Building Energy Consumption Prediction: An Extreme Deep Learning Approach," Energies, MDPI, vol. 10(10), pages 1-20, October.
    15. Bijay Neupane & Wei Lee Woon & Zeyar Aung, 2017. "Ensemble Prediction Model with Expert Selection for Electricity Price Forecasting," Energies, MDPI, vol. 10(1), pages 1-27, January.
    16. Cabello-López, Tomás & Carranza-García, Manuel & Riquelme, José C. & García-Gutiérrez, Jorge, 2023. "Forecasting solar energy production in Spain: A comparison of univariate and multivariate models at the national level," Applied Energy, Elsevier, vol. 350(C).
    17. Deb, Chirag & Zhang, Fan & Yang, Junjing & Lee, Siew Eang & Shah, Kwok Wei, 2017. "A review on time series forecasting techniques for building energy consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 902-924.
    18. Syed Aziz Ur Rehman & Yanpeng Cai & Rizwan Fazal & Gordhan Das Walasai & Nayyar Hussain Mirjat, 2017. "An Integrated Modeling Approach for Forecasting Long-Term Energy Demand in Pakistan," Energies, MDPI, vol. 10(11), pages 1-23, November.
    19. Hadjout, D. & Torres, J.F. & Troncoso, A. & Sebaa, A. & Martínez-Álvarez, F., 2022. "Electricity consumption forecasting based on ensemble deep learning with application to the Algerian market," Energy, Elsevier, vol. 243(C).
    20. Federico Divina & Miguel García Torres & Francisco A. Goméz Vela & José Luis Vázquez Noguera, 2019. "A Comparative Study of Time Series Forecasting Methods for Short Term Electric Energy Consumption Prediction in Smart Buildings," Energies, MDPI, vol. 12(10), pages 1-23, May.
    21. Federico Divina & Aude Gilson & Francisco Goméz-Vela & Miguel García Torres & José F. Torres, 2018. "Stacking Ensemble Learning for Short-Term Electricity Consumption Forecasting," Energies, MDPI, vol. 11(4), pages 1-31, April.
    22. Daniel Ramos & Pedro Faria & Zita Vale & João Mourinho & Regina Correia, 2020. "Industrial Facility Electricity Consumption Forecast Using Artificial Neural Networks and Incremental Learning," Energies, MDPI, vol. 13(18), pages 1-18, September.
    23. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    24. Cheng, Min-Yuan & Vu, Quoc-Tuan, 2024. "Bio-inspired bidirectional deep machine learning for real-time energy consumption forecasting and management," Energy, Elsevier, vol. 302(C).
    25. Xiaoyu Zhang & Rui Wang & Tao Zhang & Yajie Liu & Yabing Zha, 2018. "Short-Term Load Forecasting Using a Novel Deep Learning Framework," Energies, MDPI, vol. 11(6), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    2. Afanasyev, Dmitriy O. & Fedorova, Elena A., 2019. "On the impact of outlier filtering on the electricity price forecasting accuracy," Applied Energy, Elsevier, vol. 236(C), pages 196-210.
    3. Claudio Monteiro & L. Alfredo Fernandez-Jimenez & Ignacio J. Ramirez-Rosado, 2015. "Explanatory Information Analysis for Day-Ahead Price Forecasting in the Iberian Electricity Market," Energies, MDPI, vol. 8(9), pages 1-23, September.
    4. Panapakidis, Ioannis P. & Dagoumas, Athanasios S., 2016. "Day-ahead electricity price forecasting via the application of artificial neural network based models," Applied Energy, Elsevier, vol. 172(C), pages 132-151.
    5. S. Vijayalakshmi & G. P. Girish, 2015. "Artificial Neural Networks for Spot Electricity Price Forecasting: A Review," International Journal of Energy Economics and Policy, Econjournals, vol. 5(4), pages 1092-1097.
    6. Bijay Neupane & Wei Lee Woon & Zeyar Aung, 2017. "Ensemble Prediction Model with Expert Selection for Electricity Price Forecasting," Energies, MDPI, vol. 10(1), pages 1-27, January.
    7. Halužan, Marko & Verbič, Miroslav & Zorić, Jelena, 2020. "Performance of alternative electricity price forecasting methods: Findings from the Greek and Hungarian power exchanges," Applied Energy, Elsevier, vol. 277(C).
    8. G P Girish & Aviral Kumar Tiwari, 2016. "A comparison of different univariate forecasting models forSpot Electricity Price in India," Economics Bulletin, AccessEcon, vol. 36(2), pages 1039-1057.
    9. Roman Rodriguez-Aguilar & Jose Antonio Marmolejo-Saucedo & Brenda Retana-Blanco, 2019. "Prices of Mexican Wholesale Electricity Market: An Application of Alpha-Stable Regression," Sustainability, MDPI, vol. 11(11), pages 1-14, June.
    10. Lago, Jesus & De Ridder, Fjo & Vrancx, Peter & De Schutter, Bart, 2018. "Forecasting day-ahead electricity prices in Europe: The importance of considering market integration," Applied Energy, Elsevier, vol. 211(C), pages 890-903.
    11. Jesus Lago & Fjo De Ridder & Peter Vrancx & Bart De Schutter, 2017. "Forecasting day-ahead electricity prices in Europe: the importance of considering market integration," Papers 1708.07061, arXiv.org, revised Dec 2017.
    12. Lago, Jesus & De Ridder, Fjo & De Schutter, Bart, 2018. "Forecasting spot electricity prices: Deep learning approaches and empirical comparison of traditional algorithms," Applied Energy, Elsevier, vol. 221(C), pages 386-405.
    13. Grzegorz Marcjasz & Tomasz Serafin & Rafał Weron, 2018. "Selection of Calibration Windows for Day-Ahead Electricity Price Forecasting," Energies, MDPI, vol. 11(9), pages 1-20, September.
    14. Umut Ugurlu & Ilkay Oksuz & Oktay Tas, 2018. "Electricity Price Forecasting Using Recurrent Neural Networks," Energies, MDPI, vol. 11(5), pages 1-23, May.
    15. Nowotarski, Jakub & Weron, Rafał, 2018. "Recent advances in electricity price forecasting: A review of probabilistic forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1548-1568.
    16. Jakub Nowotarski & Rafał Weron, 2015. "Computing electricity spot price prediction intervals using quantile regression and forecast averaging," Computational Statistics, Springer, vol. 30(3), pages 791-803, September.
    17. Serinaldi, Francesco, 2011. "Distributional modeling and short-term forecasting of electricity prices by Generalized Additive Models for Location, Scale and Shape," Energy Economics, Elsevier, vol. 33(6), pages 1216-1226.
    18. Tschora, Léonard & Pierre, Erwan & Plantevit, Marc & Robardet, Céline, 2022. "Electricity price forecasting on the day-ahead market using machine learning," Applied Energy, Elsevier, vol. 313(C).
    19. Sergei Kulakov, 2020. "X-Model: Further Development and Possible Modifications," Forecasting, MDPI, vol. 2(1), pages 1-16, February.
    20. Rafal Weron & Florian Ziel, 2018. "Electricity price forecasting," HSC Research Reports HSC/18/08, Hugo Steinhaus Center, Wroclaw University of Science and Technology.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:11:p:12361-13193:d:59081. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.