IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.16069.html
   My bibliography  Save this paper

Forecasting the Volatility of Energy Transition Metals

Author

Listed:
  • Andrea Bastianin
  • Xiao Li
  • Luqman Shamsudin

Abstract

The transition to a cleaner energy mix, essential for achieving net-zero greenhouse gas emissions by 2050, will significantly increase demand for metals critical to renewable energy technologies. Energy Transition Metals (ETMs), including copper, lithium, nickel, cobalt, and rare earth elements, are indispensable for renewable energy generation and the electrification of global economies. However, their markets are characterized by high price volatility due to supply concentration, low substitutability, and limited price elasticity. This paper provides a comprehensive analysis of the price volatility of ETMs, a subset of Critical Raw Materials (CRMs). Using a combination of exploratory data analysis, data reduction, and visualization methods, we identify key features for accurate point and density forecasts. We evaluate various volatility models, including Generalized Autoregressive Conditional Heteroskedasticity (GARCH) and Stochastic Volatility (SV) models, to determine their forecasting performance. Our findings reveal significant heterogeneity in ETM volatility patterns, which challenge standard groupings by data providers and geological classifications. The results contribute to the literature on CRM economics and commodity volatility, offering novel insights into the complex dynamics of ETM markets and the modeling of their returns and volatilities.

Suggested Citation

  • Andrea Bastianin & Xiao Li & Luqman Shamsudin, 2025. "Forecasting the Volatility of Energy Transition Metals," Papers 2501.16069, arXiv.org, revised Jan 2025.
  • Handle: RePEc:arx:papers:2501.16069
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.16069
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.16069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.