IDEAS home Printed from https://ideas.repec.org/a/ags/aolpei/330100.html
   My bibliography  Save this article

Comparative Analysis of ARIMA and Artificial Neural Network Techniques for Forecasting Non-Stationary Agricultural Output Time Series

Author

Listed:
  • Awe, Olushina Olawale
  • Dias, Ronaldo

Abstract

With the vast popularity of the deep learning models in the engineering and mathematical fields, Artificial Neural Networks (ANN) have recently attracted significant research applications in agriculture, economics, informatics and finance. In this paper, we use a deep learning method to capture and predict the unknown complex nonlinear characteristics of agricultural output based on autoregressive artificial neural network, using Nigeria as a case study. Using the proposed model, shocks in agricultural output is analyzed and modeled using data obtained for a period of forty years (1980-2019), and compared with analyses obtained from the autoregressive integrated moving average model (ARIMA). This result is significant because it justifies the superiority of the hybrid ANN model over the traditional Box-Jenkins methodology for forecasting non-stationary time series. The empirical results show that the proposed autoregressive ANN model achieves an improved forecasting accuracy over the traditional Box-Jenkins ARIMA method. It is further proposed that various types of artificial neural networks would be useful in forecasting and solving relevant tasks and problems widely defined in global agricultural production.

Suggested Citation

  • Awe, Olushina Olawale & Dias, Ronaldo, 2022. "Comparative Analysis of ARIMA and Artificial Neural Network Techniques for Forecasting Non-Stationary Agricultural Output Time Series," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 14(4), December.
  • Handle: RePEc:ags:aolpei:330100
    DOI: 10.22004/ag.econ.330100
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/330100/files/552_agris-on-line-4-2022-awe-dias.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.330100?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ayinde, Opeyemi Eyitayo & Ilori, T. E. & Ayinde, K. & Babatunde, R. O., 2015. "Analysis of the Behaviour of Prices of Major Staple Foods in West Africa: A Case Study of Nigeria," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 7(4), pages 1-15, December.
    2. Yang Li & Xuewei Chao, 2020. "ANN-Based Continual Classification in Agriculture," Agriculture, MDPI, vol. 10(5), pages 1-15, May.
    3. Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
    4. Paulo Canas Rodrigues & Olushina Olawale Awe & Jonatha Sousa Pimentel & Rahim Mahmoudvand, 2020. "Modelling the Behaviour of Currency Exchange Rates with Singular Spectrum Analysis and Artificial Neural Networks," Stats, MDPI, vol. 3(2), pages 1-21, June.
    5. Olushina Olawale Awe & Luis Alberiko Gil-Alana, 2019. "Time series analysis of economic growth rate series in Nigeria: structural breaks, non-linearities and reasons behind the recent recession," Applied Economics, Taylor & Francis Journals, vol. 51(50), pages 5482-5489, October.
    6. Kharin, S., 2018. "Price Transmission Analysis: the Case of Milk Products in Russia," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 10(01).
    7. Awe, O. O. & Akinlana, D. M. & Yaya, O. S. & Aromolaran, O., 2018. "Time Series Analysis of the Behaviour of Import and Export of Agricultural and Non-Agricultural Goods in West Africa: A Case Study of Nigeria," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 10(2).
    8. Sebastian Kujawa & Gniewko Niedbała, 2021. "Artificial Neural Networks in Agriculture," Agriculture, MDPI, vol. 11(6), pages 1-6, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Awe, Olushina Olawale & Musa, Ann Precious & Sanusi, Gbenga Peter, 2023. "Revisiting economic diversification in Africa's largest resource-rich nation: Empirical insights from unsupervised machine learning," Resources Policy, Elsevier, vol. 82(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Awe, Olushina Olawale & Musa, Ann Precious & Sanusi, Gbenga Peter, 2023. "Revisiting economic diversification in Africa's largest resource-rich nation: Empirical insights from unsupervised machine learning," Resources Policy, Elsevier, vol. 82(C).
    2. Awe, O. O. & Akinlana, D. M. & Yaya, O. S. & Aromolaran, O., 2018. "Time Series Analysis of the Behaviour of Import and Export of Agricultural and Non-Agricultural Goods in West Africa: A Case Study of Nigeria," AGRIS on-line Papers in Economics and Informatics, Czech University of Life Sciences Prague, Faculty of Economics and Management, vol. 10(2).
    3. Montero-Manso, Pablo & Hyndman, Rob J., 2021. "Principles and algorithms for forecasting groups of time series: Locality and globality," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1632-1653.
    4. Olushina O Awe & Robert Mudida & Luis A. Gil‐Alana, 2021. "Comparative analysis of economic growth in Nigeria and Kenya: A fractional integration approach," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(1), pages 1197-1205, January.
    5. Qi Guo & Bruno Remillard & Anatoliy Swishchuk, 2020. "Multivariate General Compound Point Processes in Limit Order Books," Risks, MDPI, vol. 8(3), pages 1-20, September.
    6. Paolo Maranzano & Alessandro Fassò & Matteo Pelagatti & Manfred Mudelsee, 2020. "Statistical Modeling of the Early-Stage Impact of a New Traffic Policy in Milan, Italy," IJERPH, MDPI, vol. 17(3), pages 1-22, February.
    7. Paolo Andreini & Cosimo Izzo & Giovanni Ricco, 2020. "Deep Dynamic Factor Models," Papers 2007.11887, arXiv.org, revised May 2023.
    8. Elliot Beck & Damian Kozbur & Michael Wolf, 2023. "Hedging Forecast Combinations With an Application to the Random Forest," Papers 2308.15384, arXiv.org, revised Aug 2023.
    9. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    10. Philippe Goulet Coulombe, 2020. "The Macroeconomy as a Random Forest," Papers 2006.12724, arXiv.org, revised Mar 2021.
    11. Goulet Coulombe, Philippe & Leroux, Maxime & Stevanovic, Dalibor & Surprenant, Stéphane, 2021. "Macroeconomic data transformations matter," International Journal of Forecasting, Elsevier, vol. 37(4), pages 1338-1354.
    12. Philippe Goulet Coulombe & Maxime Leroux & Dalibor Stevanovic & Stéphane Surprenant, 2022. "How is machine learning useful for macroeconomic forecasting?," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 920-964, August.
    13. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    14. Achim Ahrens & Christian B. Hansen & Mark E. Schaffer, 2020. "lassopack: Model selection and prediction with regularized regression in Stata," Stata Journal, StataCorp LLC, vol. 20(1), pages 176-235, March.
    15. Gary S. Anderson & Alena Audzeyeva, 2019. "A Coherent Framework for Predicting Emerging Market Credit Spreads with Support Vector Regression," Finance and Economics Discussion Series 2019-074, Board of Governors of the Federal Reserve System (U.S.).
    16. Andrii Babii & Eric Ghysels & Jonas Striaukas, 2024. "Econometrics of machine learning methods in economic forecasting," Chapters, in: Michael P. Clements & Ana Beatriz Galvão (ed.), Handbook of Research Methods and Applications in Macroeconomic Forecasting, chapter 10, pages 246-273, Edward Elgar Publishing.
    17. Furuoka, Fumitaka & Yaya, OlaOluwa Simon & Ling, Pui Kiew & Al-Faryan, Mamdouh Abdulaziz Saleh & Islam, M. Nazmul, 2023. "Transmission of risks between energy and agricultural commodities: Frequency time-varying VAR, asymmetry and portfolio management," Resources Policy, Elsevier, vol. 81(C).
    18. Ballarin, Giovanni & Dellaportas, Petros & Grigoryeva, Lyudmila & Hirt, Marcel & van Huellen, Sophie & Ortega, Juan-Pablo, 2024. "Reservoir computing for macroeconomic forecasting with mixed-frequency data," International Journal of Forecasting, Elsevier, vol. 40(3), pages 1206-1237.
    19. Behm, Svenia & Haupt, Harry, 2020. "Predictability of hourly nitrogen dioxide concentration," Ecological Modelling, Elsevier, vol. 428(C).
    20. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:aolpei:330100. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/fevszcz.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.