IDEAS home Printed from https://ideas.repec.org/a/spr/comgts/v11y2014i1p111-137.html
   My bibliography  Save this article

Computational framework for longevity risk management

Author

Listed:
  • Valeria D’Amato
  • Steven Haberman
  • Gabriella Piscopo
  • Maria Russolillo

Abstract

Longevity risk threatens the financial stability of private and government sponsored defined benefit pension systems as well as social security schemes, in an environment already characterized by persistent low interest rates and heightened financial uncertainty. The mortality experience of countries in the industrialized world would suggest a substantial age-time interaction, with the two dominant trends affecting different age groups at different times. From a statistical point of view, this indicates a dependence structure. It is observed that mortality improvements are similar for individuals of contiguous ages (Wills and Sherris, Integrating financial and demographic longevity risk models: an Australian model for financial applications, Discussion Paper PI-0817, 2008 ). Moreover, considering the dataset by single ages, the correlations between the residuals for adjacent age groups tend to be high (as noted in Denton et al., J Population Econ 18:203–227, 2005 ). This suggests that there is value in exploring the dependence structure, also across time, in other words the inter-period correlation. In this research, we focus on the projections of mortality rates, contravening the most commonly encountered dependence property which is the “lack of dependence” (Denuit et al., Actuarial theory for dependent risks: measures. Orders and models, Wiley, New York, 2005 ). By taking into account the presence of dependence across age and time which leads to systematic over-estimation or under-estimation of uncertainty in the estimates (Liu and Braun, J Probability Stat, 813583:15, 2010 ), the paper analyzes a tailor-made bootstrap methodology for capturing the spatial dependence in deriving confidence intervals for mortality projection rates. We propose a method which leads to a prudent measure of longevity risk, avoiding the structural incompleteness of the ordinary simulation bootstrap methodology which involves the assumption of independence. Copyright Springer-Verlag Berlin Heidelberg 2014

Suggested Citation

  • Valeria D’Amato & Steven Haberman & Gabriella Piscopo & Maria Russolillo, 2014. "Computational framework for longevity risk management," Computational Management Science, Springer, vol. 11(1), pages 111-137, January.
  • Handle: RePEc:spr:comgts:v:11:y:2014:i:1:p:111-137
    DOI: 10.1007/s10287-013-0178-2
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10287-013-0178-2
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10287-013-0178-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koissi, Marie-Claire & Shapiro, Arnold F. & Hognas, Goran, 2006. "Evaluating and extending the Lee-Carter model for mortality forecasting: Bootstrap confidence interval," Insurance: Mathematics and Economics, Elsevier, vol. 38(1), pages 1-20, February.
    2. Chang, Yoosoon, 2004. "Bootstrap unit root tests in panels with cross-sectional dependency," Journal of Econometrics, Elsevier, vol. 120(2), pages 263-293, June.
    3. Stephan Smeekes & Jean-Pierre Urbain, 2014. "On the Applicability of the Sieve Bootstrap in Time Series Panels," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 76(1), pages 139-151, February.
    4. Edwin Choi & Peter Hall, 2000. "Bootstrap confidence regions computed from autoregressions of arbitrary order," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(2), pages 461-477.
    5. Jeremy Berkowitz & Lutz Kilian, 2000. "Recent developments in bootstrapping time series," Econometric Reviews, Taylor & Francis Journals, vol. 19(1), pages 1-48.
    6. Palm, Franz, 1977. "On univariate time series methods and simultaneous equation econometric models," Journal of Econometrics, Elsevier, vol. 5(3), pages 379-388, May.
    7. D’Amato, Valeria & Haberman, Steven & Piscopo, Gabriella & Russolillo, Maria, 2012. "Modelling dependent data for longevity projections," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 694-701.
    8. Angus S. Deaton & Christina Paxson, 2004. "Mortality, Income, and Income Inequality over Time in Britain and the United States," NBER Chapters, in: Perspectives on the Economics of Aging, pages 247-286, National Bureau of Economic Research, Inc.
    9. Amemiya, Takeshi, 1973. "Generalized Least Squares with an Estimated Autocovariance Matrix," Econometrica, Econometric Society, vol. 41(4), pages 723-732, July.
    10. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    11. Renshaw, A.E. & Haberman, S., 2008. "On simulation-based approaches to risk measurement in mortality with specific reference to Poisson Lee-Carter modelling," Insurance: Mathematics and Economics, Elsevier, vol. 42(2), pages 797-816, April.
    12. Hyndman, Rob J. & Shahid Ullah, Md., 2007. "Robust forecasting of mortality and fertility rates: A functional data approach," Computational Statistics & Data Analysis, Elsevier, vol. 51(10), pages 4942-4956, June.
    13. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    14. Renshaw, A. E. & Haberman, S., 2003. "Lee-Carter mortality forecasting with age-specific enhancement," Insurance: Mathematics and Economics, Elsevier, vol. 33(2), pages 255-272, October.
    15. Trapani, Lorenzo, 2013. "On bootstrapping panel factor series," Journal of Econometrics, Elsevier, vol. 172(1), pages 127-141.
    16. Frank Denton & Christine Feaver & Byron Spencer, 2005. "Time series analysis and stochastic forecasting: An econometric study of mortality and life expectancy," Journal of Population Economics, Springer;European Society for Population Economics, vol. 18(2), pages 203-227, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. D’Amato, Valeria & Haberman, Steven & Piscopo, Gabriella & Russolillo, Maria, 2012. "Modelling dependent data for longevity projections," Insurance: Mathematics and Economics, Elsevier, vol. 51(3), pages 694-701.
    2. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    3. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    4. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    5. Han Lin Shang & Rob J Hyndman & Heather Booth, 2010. "A comparison of ten principal component methods for forecasting mortality rates," Monash Econometrics and Business Statistics Working Papers 8/10, Monash University, Department of Econometrics and Business Statistics.
    6. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    7. Hatzopoulos, P. & Haberman, S., 2009. "A parameterized approach to modeling and forecasting mortality," Insurance: Mathematics and Economics, Elsevier, vol. 44(1), pages 103-123, February.
    8. Carlo G. Camarda & Ugofilippo Basellini, 2021. "Smoothing, Decomposing and Forecasting Mortality Rates," European Journal of Population, Springer;European Association for Population Studies, vol. 37(3), pages 569-602, July.
    9. Ufuk Beyaztas & Hanlin Shang, 2022. "Machine-Learning-Based Functional Time Series Forecasting: Application to Age-Specific Mortality Rates," Forecasting, MDPI, vol. 4(1), pages 1-15, March.
    10. David Atance & Ana Debón & Eliseo Navarro, 2020. "A Comparison of Forecasting Mortality Models Using Resampling Methods," Mathematics, MDPI, vol. 8(9), pages 1-21, September.
    11. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2023. "Intergenerational actuarial fairness when longevity increases: Amending the retirement age," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 161-184.
    12. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    13. D’Amato, Valeria & Di Lorenzo, Emilia & Haberman, Steven & Sagoo, Pretty & Sibillo, Marilena, 2018. "De-risking strategy: Longevity spread buy-in," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 124-136.
    14. Wang, Chou-Wen & Huang, Hong-Chih & Hong, De-Chuan, 2013. "A feasible natural hedging strategy for insurance companies," Insurance: Mathematics and Economics, Elsevier, vol. 52(3), pages 532-541.
    15. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    16. Ugofilippo Basellini & Søren Kjærgaard & Carlo Giovanni Camarda, 2020. "An age-at-death distribution approach to forecast cohort mortality," Working Papers axafx5_3agsuwaphvlfk, French Institute for Demographic Studies.
    17. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    18. Helena Chuliá & Montserrat Guillén & Jorge M. Uribe, 2015. "Mortality and Longevity Risks in the United Kingdom: Dynamic Factor Models and Copula-Functions," Working Papers 2015-03, Universitat de Barcelona, UB Riskcenter.
    19. Ana Debón & Steven Haberman & Francisco Montes & Edoardo Otranto, 2021. "Do Different Models Induce Changes in Mortality Indicators? That Is a Key Question for Extending the Lee-Carter Model," IJERPH, MDPI, vol. 18(4), pages 1-16, February.
    20. Ayuso, Mercedes & Bravo, Jorge M. & Holzmann, Robert, 2021. "Getting life expectancy estimates right for pension policy: period versus cohort approach," Journal of Pension Economics and Finance, Cambridge University Press, vol. 20(2), pages 212-231, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:comgts:v:11:y:2014:i:1:p:111-137. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.