Seasonal adjustment of daily time series
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Alexander Dokumentov & Rob J. Hyndman, 2015. "STR: A Seasonal-Trend Decomposition Procedure Based on Regression," Monash Econometrics and Business Statistics Working Papers 13/15, Monash University, Department of Econometrics and Business Statistics.
- Sean D. Campbell & Francis X. Diebold, 2005.
"Weather Forecasting for Weather Derivatives,"
Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 6-16, March.
- Sean D. Campbell & Francis X. Diebold, 2002. "Weather Forecasting for Weather Derivatives," Center for Financial Institutions Working Papers 02-42, Wharton School Center for Financial Institutions, University of Pennsylvania.
- Campbell, Sean D. & Diebold, Francis X., 2004. "Weather forecasting for weather derivatives," CFS Working Paper Series 2004/10, Center for Financial Studies (CFS).
- Sean D. Campbell & Francis X. Diebold, 2003. "Weather Forecasting for Weather Derivatives," NBER Working Papers 10141, National Bureau of Economic Research, Inc.
- Pierce, David A & Grupe, Michael R & Cleveland, William P, 1984. "Seasonal Adjustment of the Weekly Monetary Aggregates: A Model-based Approach," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(3), pages 260-270, July.
- Siem Jan Koopman & Marius Ooms, 2003.
"Time Series Modelling of Daily Tax Revenues,"
Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(4), pages 439-469, November.
- Marius Ooms & Björn de Groot & Siem Jan Koopman, 1999. "Time-Series Modelling of Daily Tax Revenues," Computing in Economics and Finance 1999 312, Society for Computational Economics.
- Siem Jan Koopman & Marius Ooms, 2001. "Time Series Modelling of Daily Tax Revenues," Tinbergen Institute Discussion Papers 01-032/4, Tinbergen Institute.
- Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2009.
"Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 194-217.
- Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2002. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Working Papers 0211, Banco de España.
- Cabrero, Alberto & Camba-Méndez, Gonzalo & Hirsch, Astrid & Nieto, Fernando, 2002. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Working Paper Series 142, European Central Bank.
- Hirotugu Akaike, 1980. "Seasonal Adjustment By A Bayesian Modeling," Journal of Time Series Analysis, Wiley Blackwell, vol. 1(1), pages 1-13, January.
- Holt, Charles C., 2004. "Forecasting seasonals and trends by exponentially weighted moving averages," International Journal of Forecasting, Elsevier, vol. 20(1), pages 5-10.
- Koopman, Siem Jan & Ooms, Marius, 2006.
"Forecasting daily time series using periodic unobserved components time series models,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
- Siem Jan Koopman & Marius Ooms, 2004. "Forecasting Daily Time Series using Periodic Unobserved Components Time Series Models," Tinbergen Institute Discussion Papers 04-135/4, Tinbergen Institute.
- Bartzsch, Nikolaus & Seitz, Franz & Setzer, Ralph, 2015. "The demand for euro banknotes in Germany: Structural modelling and forecasting," MPRA Paper 64949, University Library of Munich, Germany.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Harvey, Andrew & Koopman, Siem Jan & Riani, Marco, 1997. "The Modeling and Seasonal Adjustment of Weekly Observations," Journal of Business & Economic Statistics, American Statistical Association, vol. 15(3), pages 354-368, July.
- Ghysels,Eric & Osborn,Denise R., 2001.
"The Econometric Analysis of Seasonal Time Series,"
Cambridge Books,
Cambridge University Press, number 9780521565882, September.
- Ghysels,Eric & Osborn,Denise R., 2001. "The Econometric Analysis of Seasonal Time Series," Cambridge Books, Cambridge University Press, number 9780521562607, October.
- Holt, Charles C., 2004. "Author's retrospective on 'Forecasting seasonals and trends by exponentially weighted moving averages'," International Journal of Forecasting, Elsevier, vol. 20(1), pages 11-13.
- Víctor Gómez & Agustín Maravall, 1998.
"Automatic Modeling Methods for Univariate Series,"
Working Papers
9808, Banco de España.
- Tom Doan, "undated". "GMAUTOFIT: RATS procedure to perform automated ARIMA model selection (seasonal models)," Statistical Software Components RTS00078, Boston College Department of Economics.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Barend Abeln & Jan P. A. M. Jacobs, 2023.
"Seasonal Adjustment of Daily Data with CAMPLET,"
SpringerBriefs in Economics, in: Seasonal Adjustment Without Revisions, chapter 0, pages 63-78,
Springer.
- Barend Abeln & Jan P.A.M. Jacobs & Machiel Mulder, 2022. "Seasonal adjustment of daily data with CAMPLET," CIRANO Working Papers 2022s-06, CIRANO.
- Daniel Ollech & Deutsche Bundesbank, 2023. "Economic analysis using higher-frequency time series: challenges for seasonal adjustment," Empirical Economics, Springer, vol. 64(3), pages 1375-1398, March.
- repec:rbz:oboens:11014 is not listed on IDEAS
- Arim Jin & Dahan Lee & Jong-Bae Park & Jae Hyung Roh, 2023. "Day-Ahead Electricity Market Price Forecasting Considering the Components of the Electricity Market Price; Using Demand Decomposition, Fuel Cost, and the Kernel Density Estimation," Energies, MDPI, vol. 16(7), pages 1-19, April.
- Ivan Aleksandrovich Kopytin & Alexander Oskarovich Maslennikov & Stanislav Vyacheslavovich Zhukov, 2022. "Europe in World Natural Gas Market: International Transmission of European Price Shocks," International Journal of Energy Economics and Policy, Econjournals, vol. 12(3), pages 8-15, May.
- Byron Botha & Samkelo Duma & Daan Steenkamp, 2021. "A Truckometer for South Africa," Occasional Bulletin of Economic Notes 11034, South African Reserve Bank.
- Byron Botha & Nqaba Duma & Daan Steenkamp, 2021. "A Truckometer for South Africa," Occasional Bulletin of Economic Notes 11009, South African Reserve Bank.
- Natalia Turdyeva & Anna Tsvetkova & Levon Movsesyan & Alexey Porshakov & Dmitriy Chernyadyev, 2021. "Data of Sectoral Financial Flows as a High-Frequency Indicator of Economic Activity," Russian Journal of Money and Finance, Bank of Russia, vol. 80(2), pages 28-49, June.
- Katrin Assenmacher & Franz Seitz & Jörn Tenhofen, 2019.
"The demand for Swiss banknotes: some new evidence,"
Swiss Journal of Economics and Statistics, Springer;Swiss Society of Economics and Statistics, vol. 155(1), pages 1-22, December.
- Katrin Assenmacher & Franz Seitz & Dr. Jörn Tenhofen, 2019. "The demand for Swiss banknotes: some new evidence," Working Papers 2019-02, Swiss National Bank.
- Lourenço, Nuno & Rua, António, 2021. "The Daily Economic Indicator: tracking economic activity daily during the lockdown," Economic Modelling, Elsevier, vol. 100(C).
- Seyma Gozuyilmaz & O. Erhun Kundakcioglu, 2021. "Mathematical optimization for time series decomposition," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(3), pages 733-758, September.
- repec:rbz:oboens:11015 is not listed on IDEAS
- Ollech, Daniel, 2021. "Economic analysis using higher frequency time series: Challenges for seasonal adjustment," Discussion Papers 53/2021, Deutsche Bundesbank.
- Ángel Cuevas & Ramiro Ledo & Enrique M. Quilis, 2021. "Seasonal adjustment of the Spanish sales daily data," SERIEs: Journal of the Spanish Economic Association, Springer;Spanish Economic Association, vol. 12(4), pages 687-708, December.
- Wegmüller, Philipp & Glocker, Christian & Guggia, Valentino, 2023.
"Weekly economic activity: Measurement and informational content,"
International Journal of Forecasting, Elsevier, vol. 39(1), pages 228-243.
- Philipp Wegmüller & Christian Glocker & Valentino Guggia, 2021. "Weekly Economic Activity: Measurement and Informational Content," WIFO Working Papers 627, WIFO.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
- Barend Abeln & Jan P. A. M. Jacobs, 2023.
"COVID-19 and Seasonal Adjustment,"
SpringerBriefs in Economics, in: Seasonal Adjustment Without Revisions, chapter 0, pages 53-61,
Springer.
- Barend Abeln & Jan P. A. M. Jacobs, 2022. "COVID-19 and Seasonal Adjustment," Journal of Business Cycle Research, Springer;Centre for International Research on Economic Tendency Surveys (CIRET), vol. 18(2), pages 159-169, July.
- Barend Abeln & Jan P.A.M. Jacobs, 2021. "COVID-19 and seasonal adjustment," CAMA Working Papers 2021-23, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
- Barend Abeln & Jan P.A.M. Jacobs, 2021. "COVID19 and Seasonal Adjustment," CIRANO Working Papers 2021s-05, CIRANO.
- Meira, Erick & Cyrino Oliveira, Fernando Luiz & de Menezes, Lilian M., 2022. "Forecasting natural gas consumption using Bagging and modified regularization techniques," Energy Economics, Elsevier, vol. 106(C).
- Koopman, Siem Jan & Ooms, Marius, 2006.
"Forecasting daily time series using periodic unobserved components time series models,"
Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 885-903, November.
- Siem Jan Koopman & Marius Ooms, 2004. "Forecasting Daily Time Series using Periodic Unobserved Components Time Series Models," Tinbergen Institute Discussion Papers 04-135/4, Tinbergen Institute.
- Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2009.
"Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank,"
Journal of Forecasting, John Wiley & Sons, Ltd., vol. 28(3), pages 194-217.
- Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2002. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Working Papers 0211, Banco de España.
- Cabrero, Alberto & Camba-Méndez, Gonzalo & Hirsch, Astrid & Nieto, Fernando, 2002. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Working Paper Series 142, European Central Bank.
- Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
- Mariam El Hamiani Khatat, 2018. "Monetary Policy and Models of Currency Demand," IMF Working Papers 2018/028, International Monetary Fund.
- Felipe Santos‐Marquez, 2022. "Spatial beta‐convergence forecasting models: Evidence from municipal homicide rates in Colombia," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(2), pages 294-302, March.
- Joseph Ross, 2021. "Stationarity Statistics on Rolling Windows," Computational Economics, Springer;Society for Computational Economics, vol. 57(2), pages 655-691, February.
- Posch, Konstantin & Truden, Christian & Hungerländer, Philipp & Pilz, Jürgen, 2022. "A Bayesian approach for predicting food and beverage sales in staff canteens and restaurants," International Journal of Forecasting, Elsevier, vol. 38(1), pages 321-338.
- Ferbar Tratar, Liljana & Strmčnik, Ervin, 2016. "The comparison of Holt–Winters method and Multiple regression method: A case study," Energy, Elsevier, vol. 109(C), pages 266-276.
- Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2009.
"Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank,"
Journal of Forecasting,
John Wiley & Sons, Ltd., vol. 28(3), pages 194-217.
- Alberto Cabrero & Gonzalo Camba-Mendez & Astrid Hirsch & Fernando Nieto, 2002. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Working Papers 0211, Banco de España;Working Papers Homepage.
- Cabrero, Alberto & Camba-Méndez, Gonzalo & Hirsch, Astrid & Nieto, Fernando, 2002. "Modelling the daily banknotes in circulation in the context of the liquidity management of the European Central Bank," Working Paper Series 0142, European Central Bank.
- Pantelis Agathangelou & Demetris Trihinas & Ioannis Katakis, 2020. "A Multi-Factor Analysis of Forecasting Methods: A Study on the M4 Competition," Data, MDPI, vol. 5(2), pages 1-24, April.
- Rice, William L. & Park, So Young & Pan, Bing & Newman, Peter, 2019. "Forecasting campground demand in US national parks," Annals of Tourism Research, Elsevier, vol. 75(C), pages 424-438.
- Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
- Mirna Patricia Ponce-Flores & Jesús David Terán-Villanueva & Salvador Ibarra-Martínez & José Antonio Castán-Rocha, 2023. "Generalized Pandemic Model with COVID-19 for Early-Stage Infection Forecasting," Mathematics, MDPI, vol. 11(18), pages 1-18, September.
- Trond Husby & Hans Visser, 2021. "Short- to medium-run forecasting of mobility with dynamic linear models," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 45(28), pages 871-902.
- Svetunkov, Ivan & Kourentzes, Nikolaos, 2015. "Complex Exponential Smoothing," MPRA Paper 69394, University Library of Munich, Germany.
- Rong Zhang & Baabak Ashuri & Yong Deng, 2017. "A novel method for forecasting time series based on fuzzy logic and visibility graph," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 759-783, December.
- Simona Mikšíková & David Ulčák & František Kuda, 2022. "Analysis of Malfunctions in Selected Parking Systems in the Czech Republic," Sustainability, MDPI, vol. 14(3), pages 1-10, February.
More about this item
Keywords
Seasonal adjustment; STL; Daily time series; Seasonality;All these keywords.
JEL classification:
- C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
- C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
- C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
NEP fields
This paper has been announced in the following NEP Reports:- NEP-ECM-2018-11-05 (Econometrics)
- NEP-ETS-2018-11-05 (Econometric Time Series)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:bubdps:412018. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://edirc.repec.org/data/dbbgvde.html .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.