Solar forecasting with hourly updated numerical weather prediction
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2021.111768
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Peter Bauer & Alan Thorpe & Gilbert Brunet, 2015. "The quiet revolution of numerical weather prediction," Nature, Nature, vol. 525(7567), pages 47-55, September.
- Pedro, Hugo T.C. & Coimbra, Carlos F.M. & David, Mathieu & Lauret, Philippe, 2018. "Assessment of machine learning techniques for deterministic and probabilistic intra-hour solar forecasts," Renewable Energy, Elsevier, vol. 123(C), pages 191-203.
- Francis X. Diebold & Lutz Kilian, 2001.
"Measuring predictability: theory and macroeconomic applications,"
Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 16(6), pages 657-669.
- Francis X. Diebold & Lutz Kilian, "undated". "Measuring Predictability: Theory and Macroeconomic Applications," CARESS Working Papres 97-19, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
- Francis X. Diebold & Lutz Kilian, 1998. "Measuring Predictability: Theory and Macroeconomic Applications," Working Papers 98-16, New York University, Leonard N. Stern School of Business, Department of Economics.
- Francis X. Diebold & Lutz Kilian, 1997. "Measuring predictability: theory and macroeconomic applications," Working Papers 97-23, Federal Reserve Bank of Philadelphia.
- Francis X. Diebold & Lutz Kilian, 1997. "Measuring Predictability: Theory and Macroeconomic Applications," NBER Technical Working Papers 0213, National Bureau of Economic Research, Inc.
- Diebold, Francis & Kilian, Lutz, 2000. "Measuring Predictability: Theory And Macroeconomic Applications," CEPR Discussion Papers 2424, C.E.P.R. Discussion Papers.
- Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2019. "Automatic hourly solar forecasting using machine learning models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 487-498.
- Yang, Dazhi & Sharma, Vishal & Ye, Zhen & Lim, Lihong Idris & Zhao, Lu & Aryaputera, Aloysius W., 2015. "Forecasting of global horizontal irradiance by exponential smoothing, using decompositions," Energy, Elsevier, vol. 81(C), pages 111-119.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017.
"Forecasting with temporal hierarchies,"
European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
- George Athanasopoulos & Rob J Hyndman & Nikolaos Kourentzes & Fotios Petropoulos, 2015. "Forecasting with Temporal Hierarchies," Monash Econometrics and Business Statistics Working Papers 16/15, Monash University, Department of Econometrics and Business Statistics.
- Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2015. "Forecasting with Temporal Hierarchies," MPRA Paper 66362, University Library of Munich, Germany.
- Francis X. Diebold & Jose A. Lopez, 1995.
"Forecast evaluation and combination,"
Research Paper
9525, Federal Reserve Bank of New York.
- Francis X. Diebold & Jose A. Lopez, 1996. "Forecast Evaluation and Combination," NBER Technical Working Papers 0192, National Bureau of Economic Research, Inc.
- Yang, Dazhi, 2018. "A correct validation of the National Solar Radiation Data Base (NSRDB)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 152-155.
- Dong, Zibo & Yang, Dazhi & Reindl, Thomas & Walsh, Wilfred M., 2013. "Short-term solar irradiance forecasting using exponential smoothing state space model," Energy, Elsevier, vol. 55(C), pages 1104-1113.
- Mayer, Martin János & Gróf, Gyula, 2021. "Extensive comparison of physical models for photovoltaic power forecasting," Applied Energy, Elsevier, vol. 283(C).
- van der Meer, D.W. & Widén, J. & Munkhammar, J., 2018. "Review on probabilistic forecasting of photovoltaic power production and electricity consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1484-1512.
- Hong, Tao & Fan, Shu, 2016. "Probabilistic electric load forecasting: A tutorial review," International Journal of Forecasting, Elsevier, vol. 32(3), pages 914-938.
- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
- Kenneth Wallis, 2011. "Combining forecasts - forty years later," Applied Financial Economics, Taylor & Francis Journals, vol. 21(1-2), pages 33-41.
- Hyndman, Rob J. & Khandakar, Yeasmin, 2008.
"Automatic Time Series Forecasting: The forecast Package for R,"
Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
- Rob J. Hyndman & Yeasmin Khandakar, 2007. "Automatic time series forecasting: the forecast package for R," Monash Econometrics and Business Statistics Working Papers 6/07, Monash University, Department of Econometrics and Business Statistics.
- Thomson, Mary E. & Pollock, Andrew C. & Önkal, Dilek & Gönül, M. Sinan, 2019. "Combining forecasts: Performance and coherence," International Journal of Forecasting, Elsevier, vol. 35(2), pages 474-484.
- Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
- Yang, Dazhi & Wu, Elynn & Kleissl, Jan, 2019. "Operational solar forecasting for the real-time market," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1499-1519.
- Conor Sweeney & Ricardo J. Bessa & Jethro Browell & Pierre Pinson, 2020. "The future of forecasting for renewable energy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(2), March.
- Clemen, Robert T., 1989. "Combining forecasts: A review and annotated bibliography," International Journal of Forecasting, Elsevier, vol. 5(4), pages 559-583.
- Hibon, Michele & Evgeniou, Theodoros, 2005. "To combine or not to combine: selecting among forecasts and their combinations," International Journal of Forecasting, Elsevier, vol. 21(1), pages 15-24.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Liu, Xiangjie & Liu, Yuanyan & Kong, Xiaobing & Ma, Lele & Besheer, Ahmad H. & Lee, Kwang Y., 2023. "Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis," Energy, Elsevier, vol. 271(C).
- Despotovic, Milan & Voyant, Cyril & Garcia-Gutierrez, Luis & Almorox, Javier & Notton, Gilles, 2024. "Solar irradiance time series forecasting using auto-regressive and extreme learning methods: Influence of transfer learning and clustering," Applied Energy, Elsevier, vol. 365(C).
- Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Hanif, M.F. & Mi, J., 2024. "Harnessing AI for solar energy: Emergence of transformer models," Applied Energy, Elsevier, vol. 369(C).
- Yang, Dazhi, 2022. "Correlogram, predictability error growth, and bounds of mean square error of solar irradiance forecasts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- Wang, Yun & Song, Mengmeng & Yang, Dazhi, 2024. "Local-global feature-based spatio-temporal wind speed forecasting with a sparse and dynamic graph," Energy, Elsevier, vol. 289(C).
- Mayer, Martin János & Yang, Dazhi & Szintai, Balázs, 2023. "Comparing global and regional downscaled NWP models for irradiance and photovoltaic power forecasting: ECMWF versus AROME," Applied Energy, Elsevier, vol. 352(C).
- Yin, Linfei & Cao, Xinghui & Liu, Dongduan, 2023. "Weighted fully-connected regression networks for one-day-ahead hourly photovoltaic power forecasting," Applied Energy, Elsevier, vol. 332(C).
- Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Mayer, Martin János & Yang, Dazhi, 2022. "Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Pappa, Areti & Theodoropoulos, Ioannis & Galmarini, Stefano & Kioutsioukis, Ioannis, 2023. "Analog versus multi-model ensemble forecasting: A comparison for renewable energy resources," Renewable Energy, Elsevier, vol. 205(C), pages 563-573.
- Ding, Yunfei & Chen, Zijun & Zhang, Hongwei & Wang, Xin & Guo, Ying, 2022. "A short-term wind power prediction model based on CEEMD and WOA-KELM," Renewable Energy, Elsevier, vol. 189(C), pages 188-198.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yang, Dazhi & van der Meer, Dennis, 2021. "Post-processing in solar forecasting: Ten overarching thinking tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
- Yang, Dazhi & Wang, Wenting & Gueymard, Christian A. & Hong, Tao & Kleissl, Jan & Huang, Jing & Perez, Marc J. & Perez, Richard & Bright, Jamie M. & Xia, Xiang’ao & van der Meer, Dennis & Peters, Ian , 2022. "A review of solar forecasting, its dependence on atmospheric sciences and implications for grid integration: Towards carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Yang, Dazhi & Yang, Guoming & Liu, Bai, 2023. "Combining quantiles of calibrated solar forecasts from ensemble numerical weather prediction," Renewable Energy, Elsevier, vol. 215(C).
- Yang, Dazhi & Kleissl, Jan, 2023. "Summarizing ensemble NWP forecasts for grid operators: Consistency, elicitability, and economic value," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1640-1654.
- Yang, Dazhi & Wu, Elynn & Kleissl, Jan, 2019. "Operational solar forecasting for the real-time market," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1499-1519.
- Mayer, Martin János & Yang, Dazhi, 2022. "Probabilistic photovoltaic power forecasting using a calibrated ensemble of model chains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Chen, Xiaoyang & Du, Yang & Lim, Enggee & Fang, Lurui & Yan, Ke, 2022. "Towards the applicability of solar nowcasting: A practice on predictive PV power ramp-rate control," Renewable Energy, Elsevier, vol. 195(C), pages 147-166.
- Markovics, Dávid & Mayer, Martin János, 2022. "Comparison of machine learning methods for photovoltaic power forecasting based on numerical weather prediction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
- Yagli, Gokhan Mert & Yang, Dazhi & Srinivasan, Dipti, 2022. "Ensemble solar forecasting and post-processing using dropout neural network and information from neighboring satellite pixels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
- Mayer, Martin János, 2022. "Benefits of physical and machine learning hybridization for photovoltaic power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Mayer, Martin János & Yang, Dazhi, 2023. "Calibration of deterministic NWP forecasts and its impact on verification," International Journal of Forecasting, Elsevier, vol. 39(2), pages 981-991.
- Liu, Bai & Yang, Dazhi & Mayer, Martin János & Coimbra, Carlos F.M. & Kleissl, Jan & Kay, Merlinde & Wang, Wenting & Bright, Jamie M. & Xia, Xiang’ao & Lv, Xin & Srinivasan, Dipti & Wu, Yan & Beyer, H, 2023. "Predictability and forecast skill of solar irradiance over the contiguous United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Shaub, David, 2020. "Fast and accurate yearly time series forecasting with forecast combinations," International Journal of Forecasting, Elsevier, vol. 36(1), pages 116-120.
- Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
- Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
- Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
- Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022.
"Forecasting: theory and practice,"
International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
- Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Huiyu Huang & Tae-Hwy Lee, 2010.
"To Combine Forecasts or to Combine Information?,"
Econometric Reviews, Taylor & Francis Journals, vol. 29(5-6), pages 534-570.
- Huiyu Huang & Tae-Hwy Lee, 2006. "To Combine Forecasts or to Combine Information?," Working Papers 200806, University of California at Riverside, Department of Economics, revised Feb 2009.
- Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
More about this item
Keywords
Numerical weather prediction; Hourly solar forecasting; Post-processing; Kalman filtering;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010364. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.