IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i10p1596-d114902.html
   My bibliography  Save this article

Location of Faults in Power Transmission Lines Using the ARIMA Method

Author

Listed:
  • Danilo Pinto Moreira de Souza

    (Computational Modeling in Science and Technology (MCCT), Fluminense Federal University (UFF), Volta Redonda 21941-916, Brazil)

  • Eliane Da Silva Christo

    (Computational Modeling in Science and Technology (MCCT), Fluminense Federal University (UFF), Volta Redonda 21941-916, Brazil)

  • Aryfrance Rocha Almeida

    (Technology Center, Federal University of Piauí (UFPI), Teresina 60455-760, Brazil)

Abstract

One of the major problems in transmission lines is the occurrence of failures that affect the quality of the electric power supplied, as the exact localization of the fault must be known for correction. In order to streamline the work of maintenance teams and standardize services, this paper proposes a method of locating faults in power transmission lines by analyzing the voltage oscillographic signals extracted at the line monitoring terminals. The developed method relates time series models obtained specifically for each failure pattern. The parameters of the autoregressive integrated moving average ( ARIMA ) model are estimated in order to adjust the voltage curves and calculate the distance from the initial fault localization to the terminals. Simulations of the failures are performed through the ATPDraw ® (5.5) software and the analyses were completed using the RStudio ® (1.0.143) software. The results obtained with respect to the failures, which did not involve earth return, were satisfactory when compared with widely used techniques in the literature, particularly when the fault distance became larger in relation to the beginning of the transmission line.

Suggested Citation

  • Danilo Pinto Moreira de Souza & Eliane Da Silva Christo & Aryfrance Rocha Almeida, 2017. "Location of Faults in Power Transmission Lines Using the ARIMA Method," Energies, MDPI, vol. 10(10), pages 1-12, October.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1596-:d:114902
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/10/1596/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/10/1596/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Enrique Personal & Antonio García & Antonio Parejo & Diego Francisco Larios & Félix Biscarri & Carlos León, 2016. "A Comparison of Impedance-Based Fault Location Methods for Power Underground Distribution Systems," Energies, MDPI, vol. 9(12), pages 1-30, December.
    3. Hsueh-Hsien Chang & Nguyen Viet Linh, 2017. "Statistical Feature Extraction for Fault Locations in Nonintrusive Fault Detection of Low Voltage Distribution Systems," Energies, MDPI, vol. 10(5), pages 1-20, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jindamas Sutthichaimethee & Kuskana Kubaha, 2018. "Forecasting Energy-Related Carbon Dioxide Emissions in Thailand’s Construction Sector by Enriching the LS-ARIMAXi-ECM Model," Sustainability, MDPI, vol. 10(10), pages 1-19, October.
    2. Pedro Faria, 2019. "Distributed Energy Resources Management," Energies, MDPI, vol. 12(3), pages 1-3, February.
    3. Zuzana Bukvisova & Jaroslava Orsagova & David Topolanek & Petr Toman, 2019. "Two-Terminal Algorithm Analysis for Unsymmetrical Fault Location on 110 kV Lines," Energies, MDPI, vol. 12(7), pages 1-14, March.
    4. Pulin Cao & Hongchun Shu & Bo Yang & Na An & Dalin Qiu & Weiye Teng & Jun Dong, 2018. "Voltage Distribution–Based Fault Location for Half-Wavelength Transmission Line with Large-Scale Wind Power Integration in China," Energies, MDPI, vol. 11(3), pages 1-22, March.
    5. Yi Ning & Dazhi Wang & Yunlu Li & Haixin Zhang, 2018. "Location of Faulty Section and Faults in Hybrid Multi-Terminal Lines Based on Traveling Wave Methods," Energies, MDPI, vol. 11(5), pages 1-18, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).
    2. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    3. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 6(53), pages 286-303, January.
    4. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    5. Dombi, József & Jónás, Tamás & Tóth, Zsuzsanna Eszter, 2018. "Modeling and long-term forecasting demand in spare parts logistics businesses," International Journal of Production Economics, Elsevier, vol. 201(C), pages 1-17.
    6. Amita Gajewar & Gagan Bansal, 2016. "Revenue Forecasting for Enterprise Products," Papers 1701.06624, arXiv.org.
    7. Tao XIONG & Chongguang LI & Yukun BAO, 2017. "An improved EEMD-based hybrid approach for the short-term forecasting of hog price in China," Agricultural Economics, Czech Academy of Agricultural Sciences, vol. 63(3), pages 136-148.
    8. Pieter van der Spek & Chris Verhoef, 2014. "Balancing Time‐to‐Market and Quality in Embedded Systems," Systems Engineering, John Wiley & Sons, vol. 17(2), pages 166-192, June.
    9. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    10. Hyndman, Rob J. & Ahmed, Roman A. & Athanasopoulos, George & Shang, Han Lin, 2011. "Optimal combination forecasts for hierarchical time series," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2579-2589, September.
    11. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    12. Hossein Hassani & Emmanuel Sirimal Silva & Rangan Gupta & Mawuli K. Segnon, 2015. "Forecasting the price of gold," Applied Economics, Taylor & Francis Journals, vol. 47(39), pages 4141-4152, August.
    13. Thomas Horvath & Peter Huber & Ulrike Huemer & Helmut Mahringer & Philipp Piribauer & Mark Sommer & Stefan Weingärtner, 2022. "Mittelfristige Beschäftigungsprognose für Österreich und die Bundesländer. Berufliche und sektorale Veränderungen 2021 bis 2028," WIFO Studies, WIFO, number 70720, March.
    14. Sasikiran Kandula & Jeffrey Shaman, 2019. "Reappraising the utility of Google Flu Trends," PLOS Computational Biology, Public Library of Science, vol. 15(8), pages 1-16, August.
    15. de Silva, Ashton J, 2010. "Forecasting Australian Macroeconomic variables, evaluating innovations state space approaches," MPRA Paper 27411, University Library of Munich, Germany.
    16. Kyungsub Lee, 2022. "Application of Hawkes volatility in the observation of filtered high-frequency price process in tick structures," Papers 2207.05939, arXiv.org, revised Sep 2024.
    17. Tao Tang & Chun Huang & Zhenxing Li & Xiuguang Yuan, 2019. "Identifying Faulty Feeder for Single-Phase High Impedance Fault in Resonant Grounding Distribution System," Energies, MDPI, vol. 12(4), pages 1-15, February.
    18. Pawlikowski, Maciej & Chorowska, Agata, 2020. "Weighted ensemble of statistical models," International Journal of Forecasting, Elsevier, vol. 36(1), pages 93-97.
    19. Tendai Makoni & Delson Chikobvu, 2023. "Assessing and Forecasting the Long-Term Impact of the Global Financial Crisis on Manufacturing Sales in South Africa," Economies, MDPI, vol. 11(6), pages 1-17, May.
    20. Fijorek Kamil & Leśniewska Agnieszka, 2012. "Statistical Forecasting of the Indicators of Polish Airport’s Operations," Folia Oeconomica Stetinensia, Sciendo, vol. 11(1), pages 7-7, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:10:p:1596-:d:114902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.