IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.10537.html
   My bibliography  Save this paper

A New Metric for Lumpy and Intermittent Demand Forecasts: Stock-keeping-oriented Prediction Error Costs

Author

Listed:
  • Dominik Martin
  • Philipp Spitzer
  • Niklas Kuhl

Abstract

Forecasts of product demand are essential for short- and long-term optimization of logistics and production. Thus, the most accurate prediction possible is desirable. In order to optimally train predictive models, the deviation of the forecast compared to the actual demand needs to be assessed by a proper metric. However, if a metric does not represent the actual prediction error, predictive models are insufficiently optimized and, consequently, will yield inaccurate predictions. The most common metrics such as MAPE or RMSE, however, are not suitable for the evaluation of forecasting errors, especially for lumpy and intermittent demand patterns, as they do not sufficiently account for, e.g., temporal shifts (prediction before or after actual demand) or cost-related aspects. Therefore, we propose a novel metric that, in addition to statistical considerations, also addresses business aspects. Additionally, we evaluate the metric based on simulated and real demand time series from the automotive aftermarket.

Suggested Citation

  • Dominik Martin & Philipp Spitzer & Niklas Kuhl, 2020. "A New Metric for Lumpy and Intermittent Demand Forecasts: Stock-keeping-oriented Prediction Error Costs," Papers 2004.10537, arXiv.org.
  • Handle: RePEc:arx:papers:2004.10537
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.10537
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    2. Kourentzes, Nikolaos, 2013. "Intermittent demand forecasts with neural networks," International Journal of Production Economics, Elsevier, vol. 143(1), pages 198-206.
    3. Wallström, Peter & Segerstedt, Anders, 2010. "Evaluation of forecasting error measurements and techniques for intermittent demand," International Journal of Production Economics, Elsevier, vol. 128(2), pages 625-636, December.
    4. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    5. Somnath Mukhopadhyay & Adriano O. Solis & Rafael S. Gutierrez, 2012. "The Accuracy of Non‐traditional versus Traditional Methods of Forecasting Lumpy Demand," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 31(8), pages 721-735, December.
    6. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    7. Armstrong, J. Scott & Collopy, Fred, 1992. "Error measures for generalizing about forecasting methods: Empirical comparisons," International Journal of Forecasting, Elsevier, vol. 8(1), pages 69-80, June.
    8. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.
    9. Goodwin, Paul & Lawton, Richard, 1999. "On the asymmetry of the symmetric MAPE," International Journal of Forecasting, Elsevier, vol. 15(4), pages 405-408, October.
    10. Makridakis, Spyros, 1993. "Accuracy measures: theoretical and practical concerns," International Journal of Forecasting, Elsevier, vol. 9(4), pages 527-529, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Philippe St-Aubin & Bruno Agard, 2022. "Precision and Reliability of Forecasts Performance Metrics," Forecasting, MDPI, vol. 4(4), pages 1-22, October.
    2. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    3. Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
    4. Jennifer L. Castle & Jurgen A. Doornik & David F. Hendry, 2021. "Forecasting Principles from Experience with Forecasting Competitions," Forecasting, MDPI, vol. 3(1), pages 1-28, February.
    5. Wen, Xin & Jaxa-Rozen, Marc & Trutnevyte, Evelina, 2022. "Accuracy indicators for evaluating retrospective performance of energy system models," Applied Energy, Elsevier, vol. 325(C).
    6. Colin Singleton & Peter Grindrod, 2021. "Forecasting for Battery Storage: Choosing the Error Metric," Energies, MDPI, vol. 14(19), pages 1-11, October.
    7. Che-Yu Hung & Chien-Chih Wang & Shi-Woei Lin & Bernard C. Jiang, 2022. "An Empirical Comparison of the Sales Forecasting Performance for Plastic Tray Manufacturing Using Missing Data," Sustainability, MDPI, vol. 14(4), pages 1-21, February.
    8. Bacci, Livio Agnew & Mello, Luiz Gustavo & Incerti, Taynara & Paulo de Paiva, Anderson & Balestrassi, Pedro Paulo, 2019. "Optimization of combined time series methods to forecast the demand for coffee in Brazil: A new approach using Normal Boundary Intersection coupled with mixture designs of experiments and rotated fact," International Journal of Production Economics, Elsevier, vol. 212(C), pages 186-211.
    9. Jennifer L. Castle & Jurgen A. Doornik & David Hendry, 2019. "Some forecasting principles from the M4 competition," Economics Papers 2019-W01, Economics Group, Nuffield College, University of Oxford.
    10. Blaskowitz, Oliver & Herwartz, Helmut, 2011. "On economic evaluation of directional forecasts," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1058-1065, October.
    11. Maria Tzitiridou-Chatzopoulou & Georgia Zournatzidou & Michael Kourakos, 2024. "Predicting Future Birth Rates with the Use of an Adaptive Machine Learning Algorithm: A Forecasting Experiment for Scotland," IJERPH, MDPI, vol. 21(7), pages 1-13, June.
    12. Bunn, Derek W. & Taylor, James W., 2001. "Setting accuracy targets for short-term judgemental sales forecasting," International Journal of Forecasting, Elsevier, vol. 17(2), pages 159-169.
    13. Kim, Sungil & Kim, Heeyoung, 2016. "A new metric of absolute percentage error for intermittent demand forecasts," International Journal of Forecasting, Elsevier, vol. 32(3), pages 669-679.
    14. Mirakyan, Atom & Meyer-Renschhausen, Martin & Koch, Andreas, 2017. "Composite forecasting approach, application for next-day electricity price forecasting," Energy Economics, Elsevier, vol. 66(C), pages 228-237.
    15. Madadkhani, Shiva & Ikonnikova, Svetlana, 2024. "Toward high-resolution projection of electricity prices: A machine learning approach to quantifying the effects of high fuel and CO2 prices," Energy Economics, Elsevier, vol. 129(C).
    16. Lolli, F. & Gamberini, R. & Regattieri, A. & Balugani, E. & Gatos, T. & Gucci, S., 2017. "Single-hidden layer neural networks for forecasting intermittent demand," International Journal of Production Economics, Elsevier, vol. 183(PA), pages 116-128.
    17. González-Sopeña, J.M. & Pakrashi, V. & Ghosh, B., 2021. "An overview of performance evaluation metrics for short-term statistical wind power forecasting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    18. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
    19. McKenzie, Jordi, 2011. "Mean absolute percentage error and bias in economic forecasting," Economics Letters, Elsevier, vol. 113(3), pages 259-262.
    20. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.10537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.