IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v11y2019i23p6539-d288855.html
   My bibliography  Save this article

Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case

Author

Listed:
  • Julio Barzola-Monteses

    (Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, 090514 Guayaquil, Ecuador
    Department of Computer Science and Artificial Intelligence, Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18071 Granada, Spain)

  • Mónica Mite-León

    (Facultad de Ciencias Matemáticas y Físicas, Universidad de Guayaquil, 090514 Guayaquil, Ecuador)

  • Mayken Espinoza-Andaluz

    (Centro de Energías Renovables y Alternativas, Facultad de Ingeniería Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral, ESPOL, 09-01-5863 Guayaquil, Ecuador)

  • Juan Gómez-Romero

    (Department of Computer Science and Artificial Intelligence, Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18071 Granada, Spain)

  • Waldo Fajardo

    (Department of Computer Science and Artificial Intelligence, Escuela Técnica Superior de Ingenierías Informática y de Telecomunicación, Universidad de Granada, 18071 Granada, Spain)

Abstract

Electrical generation in Ecuador mainly comes from hydroelectric and thermo-fossil sources, with the former amounting to almost half of the national production. Even though hydroelectric power sources are highly stable, there is a threat of droughts and floods affecting Ecuadorian water reservoirs and producing electrical faults, as highlighted by the 2009 Ecuador electricity crisis. Therefore, predicting the behavior of the hydroelectric system is crucial to develop appropriate planning strategies and a good starting point for energy policy decisions. In this paper, we developed a time series predictive model of hydroelectric power production in Ecuador. To this aim, we used production and precipitation data from 2000 to 2015 and compared the Box-Jenkins (ARIMA) and the Box-Tiao (ARIMAX) regression methods. The results showed that the best model is the ARIMAX (1,1,1) (1,0,0) 12 , which considers an exogenous variable precipitation in the Napo River basin and can accurately predict monthly production values up to a year in advance. This model can provide valuable insights to Ecuadorian energy managers and policymakers.

Suggested Citation

  • Julio Barzola-Monteses & Mónica Mite-León & Mayken Espinoza-Andaluz & Juan Gómez-Romero & Waldo Fajardo, 2019. "Time Series Analysis for Predicting Hydroelectric Power Production: The Ecuador Case," Sustainability, MDPI, vol. 11(23), pages 1-19, November.
  • Handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6539-:d:288855
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/11/23/6539/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/11/23/6539/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majid Dehghani & Hossein Riahi-Madvar & Farhad Hooshyaripor & Amir Mosavi & Shahaboddin Shamshirband & Edmundas Kazimieras Zavadskas & Kwok-wing Chau, 2019. "Prediction of Hydropower Generation Using Grey Wolf Optimization Adaptive Neuro-Fuzzy Inference System," Energies, MDPI, vol. 12(2), pages 1-20, January.
    2. Elamin, Niematallah & Fukushige, Mototsugu, 2018. "Modeling and forecasting hourly electricity demand by SARIMAX with interactions," Energy, Elsevier, vol. 165(PB), pages 257-268.
    3. Dickey, David A & Fuller, Wayne A, 1981. "Likelihood Ratio Statistics for Autoregressive Time Series with a Unit Root," Econometrica, Econometric Society, vol. 49(4), pages 1057-1072, June.
    4. Pfaff, Bernhard, 2008. "VAR, SVAR and SVEC Models: Implementation Within R Package vars," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i04).
    5. Franses, Philip Hans, 2016. "A note on the Mean Absolute Scaled Error," International Journal of Forecasting, Elsevier, vol. 32(1), pages 20-22.
    6. Kim, Deockho & Hur, Jin, 2018. "Short-term probabilistic forecasting of wind energy resources using the enhanced ensemble method," Energy, Elsevier, vol. 157(C), pages 211-226.
    7. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    8. Matti Koivisto & Kaushik Das & Feng Guo & Poul Sørensen & Edgar Nuño & Nicolaos Cutululis & Petr Maule, 2019. "Using time series simulation tools for assessing the effects of variable renewable energy generation on power and energy systems," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(3), May.
    9. Lee, Yerim & Hur, Jin, 2019. "A simultaneous approach implementing wind-powered electric vehicle charging stations for charging demand dispersion," Renewable Energy, Elsevier, vol. 144(C), pages 172-179.
    10. Sher, Farooq & Pans, Miguel A. & Afilaka, Daniel T. & Sun, Chenggong & Liu, Hao, 2017. "Experimental investigation of woody and non-woody biomass combustion in a bubbling fluidised bed combustor focusing on gaseous emissions and temperature profiles," Energy, Elsevier, vol. 141(C), pages 2069-2080.
    11. Cevallos-Sierra, Jaime & Ramos-Martin, Jesús, 2018. "Spatial assessment of the potential of renewable energy: The case of Ecuador," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1154-1165.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ewa Chodakowska & Joanicjusz Nazarko & Łukasz Nazarko, 2021. "ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise," Energies, MDPI, vol. 14(23), pages 1-22, November.
    2. Stefenon, Stefano Frizzo & Seman, Laio Oriel & Aquino, Luiza Scapinello & Coelho, Leandro dos Santos, 2023. "Wavelet-Seq2Seq-LSTM with attention for time series forecasting of level of dams in hydroelectric power plants," Energy, Elsevier, vol. 274(C).
    3. Jose Erazo & Guillermo Barragan & Modesto Pérez-Sánchez & Clotario Tapia & Marco Calahorrano & Victor Hidalgo, 2022. "Geometrical Optimization of Pelton Turbine Buckets for Enhancing Overall Efficiency by Using a Parametric Model—A Case Study: Hydroelectric Power Plant “Illuchi N2” from Ecuador," Energies, MDPI, vol. 15(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    2. Drachal, Krzysztof, 2021. "Forecasting crude oil real prices with averaging time-varying VAR models," Resources Policy, Elsevier, vol. 74(C).
    3. Makridakis, Spyros & Spiliotis, Evangelos & Assimakopoulos, Vassilios, 2020. "The M4 Competition: 100,000 time series and 61 forecasting methods," International Journal of Forecasting, Elsevier, vol. 36(1), pages 54-74.
    4. Kolassa, Stephan, 2016. "Evaluating predictive count data distributions in retail sales forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 788-803.
    5. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
    6. repec:jss:jstsof:27:i03 is not listed on IDEAS
    7. Filippo Lechthaler & Lisa Leinert, 2019. "Moody oil: What is driving the crude oil price?," Empirical Economics, Springer, vol. 57(5), pages 1547-1578, November.
    8. Rostami-Tabar, Bahman & Ziel, Florian, 2022. "Anticipating special events in Emergency Department forecasting," International Journal of Forecasting, Elsevier, vol. 38(3), pages 1197-1213.
    9. Ogliari, Emanuele & Guilizzoni, Manfredo & Giglio, Alessandro & Pretto, Silvia, 2021. "Wind power 24-h ahead forecast by an artificial neural network and an hybrid model: Comparison of the predictive performance," Renewable Energy, Elsevier, vol. 178(C), pages 1466-1474.
    10. Montero-Sousa, Juan Aurelio & Aláiz-Moretón, Héctor & Quintián, Héctor & González-Ayuso, Tomás & Novais, Paulo & Calvo-Rolle, José Luis, 2020. "Hydrogen consumption prediction of a fuel cell based system with a hybrid intelligent approach," Energy, Elsevier, vol. 205(C).
    11. S. S. Abere & T. O. Akinbobola, 2020. "External Shocks, Institutional Quality, and Macroeconomic Performance in Nigeria," SAGE Open, , vol. 10(2), pages 21582440209, May.
    12. Kang, Yanfei & Spiliotis, Evangelos & Petropoulos, Fotios & Athiniotis, Nikolaos & Li, Feng & Assimakopoulos, Vassilios, 2021. "Déjà vu: A data-centric forecasting approach through time series cross-similarity," Journal of Business Research, Elsevier, vol. 132(C), pages 719-731.
    13. Nikolay Robinzonov & Gerhard Tutz & Torsten Hothorn, 2012. "Boosting techniques for nonlinear time series models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(1), pages 99-122, January.
    14. Krzysztof Drachal, 2019. "Analysis of Agricultural Commodities Prices with New Bayesian Model Combination Schemes," Sustainability, MDPI, vol. 11(19), pages 1-23, September.
    15. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    16. Tan, Bee Wah & Tang, Chor Foon, 2011. "The dynamic relationship between private domestic investment, the user cost of capital, and economic growth in Malaysia," MPRA Paper 27964, University Library of Munich, Germany.
    17. Giacomo Sbrana & Andrea Silvestrini, 2024. "The structural Theta method and its predictive performance in the M4-Competition," Temi di discussione (Economic working papers) 1457, Bank of Italy, Economic Research and International Relations Area.
    18. Drachal, Krzysztof, 2019. "Forecasting prices of selected metals with Bayesian data-rich models," Resources Policy, Elsevier, vol. 64(C).
    19. Palanisamy Manigandan & MD Shabbir Alam & Majed Alharthi & Uzma Khan & Kuppusamy Alagirisamy & Duraisamy Pachiyappan & Abdul Rehman, 2021. "Forecasting Natural Gas Production and Consumption in United States-Evidence from SARIMA and SARIMAX Models," Energies, MDPI, vol. 14(19), pages 1-17, September.
    20. Wang, Qiang & Li, Shuyu & Pisarenko, Zhanna, 2020. "Heterogeneous effects of energy efficiency, oil price, environmental pressure, R&D investment, and policy on renewable energy -- evidence from the G20 countries," Energy, Elsevier, vol. 209(C).
    21. Evangelos Spiliotis & Spyros Makridakis & Artemios-Anargyros Semenoglou & Vassilios Assimakopoulos, 2022. "Comparison of statistical and machine learning methods for daily SKU demand forecasting," Operational Research, Springer, vol. 22(3), pages 3037-3061, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:11:y:2019:i:23:p:6539-:d:288855. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.