IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v7y2019i1p27-d209273.html
   My bibliography  Save this article

Credible Regression Approaches to Forecast Mortality for Populations with Limited Data

Author

Listed:
  • Apostolos Bozikas

    (Department of Statistics and Insurance Science, University of Piraeus, 18534 Piraeus, Greece)

  • Georgios Pitselis

    (Department of Statistics and Insurance Science, University of Piraeus, 18534 Piraeus, Greece)

Abstract

In this paper, we propose a credible regression approach with random coefficients to model and forecast the mortality dynamics of a given population with limited data. Age-specific mortality rates are modelled and extrapolation methods are utilized to estimate future mortality rates. The results on Greek mortality data indicate that credibility regression contributed to more accurate forecasts than those produced from the Lee–Carter and Cairns–Blake–Dowd models. An application on pricing insurance-related products is also provided.

Suggested Citation

  • Apostolos Bozikas & Georgios Pitselis, 2019. "Credible Regression Approaches to Forecast Mortality for Populations with Limited Data," Risks, MDPI, vol. 7(1), pages 1-22, February.
  • Handle: RePEc:gam:jrisks:v:7:y:2019:i:1:p:27-:d:209273
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/7/1/27/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/7/1/27/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    2. Hendrik Hansen, 2013. "The forecasting performance of mortality models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(1), pages 11-31, January.
    3. Schinzinger, Edo & Denuit, Michel & Christiansen, Marcus, 2016. "A multivariate evolutionary credibility model for mortality improvement rates," LIDAM Reprints ISBA 2016019, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Plat, Richard, 2009. "On stochastic mortality modeling," Insurance: Mathematics and Economics, Elsevier, vol. 45(3), pages 393-404, December.
    5. Huang, Fei & Browne, Bridget, 2017. "Mortality forecasting using a modified Continuous Mortality Investigation Mortality Projections Model for China I: methodology and country-level results," Annals of Actuarial Science, Cambridge University Press, vol. 11(1), pages 20-45, March.
    6. Yikai (Maxwell) Gong & Zhuangdi Li & Maria Milazzo & Kristen Moore & Matthew Provencher, 2018. "Credibility Methods for Individual Life Insurance," Risks, MDPI, vol. 6(4), pages 1-16, December.
    7. De Vylder, Fl., 1978. "Parameter Estimation in Credibility Theory," ASTIN Bulletin, Cambridge University Press, vol. 10(1), pages 99-112, May.
    8. Bojuan Zhao, 2012. "A modified Lee–Carter model for analysing short-base-period data," Population Studies, Taylor & Francis Journals, vol. 66(1), pages 39-52.
    9. Salhi, Yahia & Thérond, Pierre-E., 2018. "Age-Specific Adjustment Of Graduated Mortality," ASTIN Bulletin, Cambridge University Press, vol. 48(2), pages 543-569, May.
    10. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    11. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    12. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    13. Hardy, M.R. & Panjer, H.H., 1998. "A Credibility Approach to Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 28(2), pages 269-283, November.
    14. Schinzinger, Edo & Denuit, Michel M. & Christiansen, Marcus C., 2016. "A multivariate evolutionary credibility model for mortality improvement rates," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 70-81.
    15. Han Lin Shang & Heather Booth & Rob Hyndman, 2011. "Point and interval forecasts of mortality rates and life expectancy: A comparison of ten principal component methods," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 25(5), pages 173-214.
    16. Andrew J. G. Cairns & David Blake & Kevin Dowd, 2006. "A Two‐Factor Model for Stochastic Mortality with Parameter Uncertainty: Theory and Calibration," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 73(4), pages 687-718, December.
    17. Hong Li & Yang Lu, 2017. "A Bayesian non-parametric model for small population mortality," Post-Print hal-02084918, HAL.
    18. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    19. Cary Chi-Liang Tsai & Shuai Yang, 2015. "A Linear Regression Approach to Modeling Mortality Rates of Different Forms," North American Actuarial Journal, Taylor & Francis Journals, vol. 19(1), pages 1-23, January.
    20. Ledolter, Johannes & Klugman, Stuart & Lee, Chang-Soo, 1991. "Credibility Models with Time-Varying Trend Components," ASTIN Bulletin, Cambridge University Press, vol. 21(1), pages 73-91, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    3. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    4. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
    5. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    6. Ugofilippo Basellini & Søren Kjærgaard & Carlo Giovanni Camarda, 2020. "An age-at-death distribution approach to forecast cohort mortality," Working Papers axafx5_3agsuwaphvlfk, French Institute for Demographic Studies.
    7. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2016. "A unified approach to mortality modelling using state-space framework: characterisation, identification, estimation and forecasting," Papers 1605.09484, arXiv.org.
    8. Basellini, Ugofilippo & Kjærgaard, Søren & Camarda, Carlo Giovanni, 2020. "An age-at-death distribution approach to forecast cohort mortality," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 129-143.
    9. Apostolos Bozikas & Georgios Pitselis, 2018. "An Empirical Study on Stochastic Mortality Modelling under the Age-Period-Cohort Framework: The Case of Greece with Applications to Insurance Pricing," Risks, MDPI, vol. 6(2), pages 1-34, April.
    10. Han Lin Shang & Steven Haberman, 2020. "Retiree Mortality Forecasting: A Partial Age-Range or a Full Age-Range Model?," Risks, MDPI, vol. 8(3), pages 1-11, July.
    11. Norkhairunnisa Redzwan & Rozita Ramli, 2022. "A Bibliometric Analysis of Research on Stochastic Mortality Modelling and Forecasting," Risks, MDPI, vol. 10(10), pages 1-17, October.
    12. Man Chung Fung & Gareth W. Peters & Pavel V. Shevchenko, 2017. "Cohort effects in mortality modelling: a Bayesian state-space approach," Papers 1703.08282, arXiv.org.
    13. Mercedes Ayuso & Jorge M. Bravo & Robert Holzmann & Edward Palmer, 2021. "Automatic Indexation of the Pension Age to Life Expectancy: When Policy Design Matters," Risks, MDPI, vol. 9(5), pages 1-28, May.
    14. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2023. "Intergenerational actuarial fairness when longevity increases: Amending the retirement age," Insurance: Mathematics and Economics, Elsevier, vol. 113(C), pages 161-184.
    15. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    16. Colin O’hare & Youwei Li, 2017. "Modelling mortality: are we heading in the right direction?," Applied Economics, Taylor & Francis Journals, vol. 49(2), pages 170-187, January.
    17. Colin O’hare & Youwei Li, 2017. "Models of mortality rates – analysing the residuals," Applied Economics, Taylor & Francis Journals, vol. 49(52), pages 5309-5323, November.
    18. Jaap Spreeuw & Iqbal Owadally & Muhammad Kashif, 2022. "Projecting Mortality Rates Using a Markov Chain," Mathematics, MDPI, vol. 10(7), pages 1-18, April.
    19. James Risk & Michael Ludkovski, 2015. "Statistical Emulators for Pricing and Hedging Longevity Risk Products," Papers 1508.00310, arXiv.org, revised Sep 2015.
    20. Rachel WINGENBACH & Jong-Min KIM & Hojin JUNG, 2020. "Living Longer in High Longevity Risk," JODE - Journal of Demographic Economics, Cambridge University Press, vol. 86(1), pages 47-86, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:7:y:2019:i:1:p:27-:d:209273. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.