IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v201y2017icp371-381.html
   My bibliography  Save this article

A communitarian microgrid storage planning system inside the scope of a smart city

Author

Listed:
  • Coelho, Vitor N.
  • Coelho, Igor M.
  • Coelho, Bruno N.
  • de Oliveira, Glauber C.
  • Barbosa, Alexandre C.
  • Pereira, Leo
  • de Freitas, Alan
  • Santos, Haroldo G.
  • Ochi, Luis S.
  • Guimarães, Frederico G.

Abstract

In this paper (a substantial extension of the short version presented at REM2016 on April 19–21, Maldives [1]), multi-objective power dispatching is discussed in the scope of microgrids located in smart cities. The proposed system considers the use of Plug-in Electric Vehicle (PEV) and Unmanned Aerial Vehicle (UAV) as storage units. The problem involves distinct types of vehicles and a community, composed of small houses, residential areas and different Renewable Energy Resources. In order to highlight possibilities for power dispatching, the optimization of three distinct goals is considered in the analysis: mini/microgrid total costs; usage of vehicles batteries; and maximum grid peak load. Sets of non-dominated solutions are obtained using a mathematical programming based heuristic (Matheuristic). By analyzing cases of study composed with up to 70 vehicles, we emphasize that PEVs and UAVs can effectively contribute for renewable energy integration into mini/microgrid systems. Smart cities policy makers and citizens are suggested to consider the proposed tool for supporting decision making for cities under development, guiding their choices for future investments on renewable energy resources.

Suggested Citation

  • Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & de Oliveira, Glauber C. & Barbosa, Alexandre C. & Pereira, Leo & de Freitas, Alan & Santos, Haroldo G. & Ochi, Luis S. & Guimarães, Frederico G., 2017. "A communitarian microgrid storage planning system inside the scope of a smart city," Applied Energy, Elsevier, vol. 201(C), pages 371-381.
  • Handle: RePEc:eee:appene:v:201:y:2017:i:c:p:371-381
    DOI: 10.1016/j.apenergy.2016.12.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916318062
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.12.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Zishuo & Yu, Hang & Peng, Zhenwei & Zhao, Mei, 2015. "Methods and tools for community energy planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1335-1348.
    2. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    3. Groote, Jesper De & Ommeren, Jos Van & Koster, Hans R.A., 2016. "Car ownership and residential parking subsidies: Evidence from Amsterdam," Economics of Transportation, Elsevier, vol. 6(C), pages 25-37.
    4. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.
    5. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    6. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Cohen, Miri Weiss & Reis, Agnaldo J.R. & Silva, Sidelmo M. & Souza, Marcone J.F. & Fleming, Peter J. & Guimarães, Frederico G., 2016. "Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid," Renewable Energy, Elsevier, vol. 89(C), pages 730-742.
    7. Rigo-Mariani, Rémy & Sareni, Bruno & Roboam, Xavier & Turpin, Christophe, 2014. "Optimal power dispatching strategies in smart-microgrids with storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 649-658.
    8. Luca Bertolini & Frank le Clercq, 2003. "Urban Development without more Mobility by Car? Lessons from Amsterdam, a Multimodal Urban Region," Environment and Planning A, , vol. 35(4), pages 575-589, April.
    9. Jeffrey D. Camm & Amitabh S. Raturi & Shigeru Tsubakitani, 1990. "Cutting Big M Down to Size," Interfaces, INFORMS, vol. 20(5), pages 61-66, October.
    10. Aghaei, Jamshid & Nezhad, Ali Esmaeel & Rabiee, Abdorreza & Rahimi, Ehsan, 2016. "Contribution of Plug-in Hybrid Electric Vehicles in power system uncertainty management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 450-458.
    11. Liu, Nian & Tang, Qingfeng & Zhang, Jianhua & Fan, Wei & Liu, Jie, 2014. "A hybrid forecasting model with parameter optimization for short-term load forecasting of micro-grids," Applied Energy, Elsevier, vol. 129(C), pages 336-345.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Muhammad Salman Sami & Muhammad Abrar & Rizwan Akram & Muhammad Majid Hussain & Mian Hammad Nazir & Muhammad Saad Khan & Safdar Raza, 2021. "Energy Management of Microgrids for Smart Cities: A Review," Energies, MDPI, vol. 14(18), pages 1-18, September.
    2. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    3. Ahmed Samawi Alkhafaji & Hafedh Trabelsi, 2022. "Uses of Superconducting Magnetic Energy Storage Systems in Microgrids under Unbalanced Inductive Loads and Partial Shading Conditions," Energies, MDPI, vol. 15(22), pages 1-28, November.
    4. Huang, Jing & Boland, John & Liu, Weidong & Xu, Chang & Zang, Haixiang, 2018. "A decision-making tool for determination of storage capacity in grid-connected PV systems," Renewable Energy, Elsevier, vol. 128(PA), pages 299-304.
    5. Thays A. Oliveira & Miquel Oliver & Helena Ramalhinho, 2020. "Challenges for Connecting Citizens and Smart Cities: ICT, E-Governance and Blockchain," Sustainability, MDPI, vol. 12(7), pages 1-21, April.
    6. Ferahtia, Seydali & Houari, Azeddine & Cioara, Tudor & Bouznit, Mohammed & Rezk, Hegazy & Djerioui, Ali, 2024. "Recent advances on energy management and control of direct current microgrid for smart cities and industry: A Survey," Applied Energy, Elsevier, vol. 368(C).
    7. Thays A. Oliveira & Yuri B. Gabrich & Helena Ramalhinho & Miquel Oliver & Miri W. Cohen & Luiz S. Ochi & Serigne Gueye & Fábio Protti & Alysson A. Pinto & Diógenes V. M. Ferreira & Igor M. Coelho & Vi, 2020. "Mobility, Citizens, Innovation and Technology in Digital and Smart Cities," Future Internet, MDPI, vol. 12(2), pages 1-27, January.
    8. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Auza, Anna & Asadi, Ehsan & Chenari, Behrang & Gameiro da Silva, Manuel, 2024. "Review of cost objective functions in multi-objective optimisation analysis of buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    10. Sun, Qixing & Xing, Dong & Alafnan, Hamoud & Pei, Xiaoze & Zhang, Min & Yuan, Weijia, 2019. "Design and test of a new two-stage control scheme for SMES-battery hybrid energy storage systems for microgrid applications," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    11. Zheng, Menglian & Wang, Xinhao & Meinrenken, Christoph J. & Ding, Yi, 2018. "Economic and environmental benefits of coordinating dispatch among distributed electricity storage," Applied Energy, Elsevier, vol. 210(C), pages 842-855.
    12. Mina Farmanbar & Kiyan Parham & Øystein Arild & Chunming Rong, 2019. "A Widespread Review of Smart Grids Towards Smart Cities," Energies, MDPI, vol. 12(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Coelho, Vitor N. & Weiss Cohen, Miri & Coelho, Igor M. & Liu, Nian & Guimarães, Frederico Gadelha, 2017. "Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids," Applied Energy, Elsevier, vol. 187(C), pages 820-832.
    2. Yuan, Shengxi & Kocaman, Ayse Selin & Modi, Vijay, 2017. "Benefits of forecasting and energy storage in isolated grids with large wind penetration – The case of Sao Vicente," Renewable Energy, Elsevier, vol. 105(C), pages 167-174.
    3. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    4. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Reis, Agnaldo J.R. & Enayatifar, Rasul & Souza, Marcone J.F. & Guimarães, Frederico G., 2016. "A self-adaptive evolutionary fuzzy model for load forecasting problems on smart grid environment," Applied Energy, Elsevier, vol. 169(C), pages 567-584.
    5. Coelho, Vitor N. & Coelho, Igor M. & Coelho, Bruno N. & Cohen, Miri Weiss & Reis, Agnaldo J.R. & Silva, Sidelmo M. & Souza, Marcone J.F. & Fleming, Peter J. & Guimarães, Frederico G., 2016. "Multi-objective energy storage power dispatching using plug-in vehicles in a smart-microgrid," Renewable Energy, Elsevier, vol. 89(C), pages 730-742.
    6. Ahmad Khan, Aftab & Naeem, Muhammad & Iqbal, Muhammad & Qaisar, Saad & Anpalagan, Alagan, 2016. "A compendium of optimization objectives, constraints, tools and algorithms for energy management in microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1664-1683.
    7. Yuanyuan Zhou & Min Zhou & Qing Xia & Wei-Chiang Hong, 2019. "Construction of EMD-SVR-QGA Model for Electricity Consumption: Case of University Dormitory," Mathematics, MDPI, vol. 7(12), pages 1-23, December.
    8. Md Asaduzzaman Shoeb & Farhad Shahnia & GM Shafiullah & Fushuan Wen, 2023. "A Technique to Optimally Prevent the Voltage and Frequency Violation in Renewable Energy Integrated Microgrids," Energies, MDPI, vol. 16(15), pages 1-27, August.
    9. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    10. Zhang, Jinliang & Wei, Yi-Ming & Li, Dezhi & Tan, Zhongfu & Zhou, Jianhua, 2018. "Short term electricity load forecasting using a hybrid model," Energy, Elsevier, vol. 158(C), pages 774-781.
    11. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    12. Thays A. Oliveira & Yuri B. Gabrich & Helena Ramalhinho & Miquel Oliver & Miri W. Cohen & Luiz S. Ochi & Serigne Gueye & Fábio Protti & Alysson A. Pinto & Diógenes V. M. Ferreira & Igor M. Coelho & Vi, 2020. "Mobility, Citizens, Innovation and Technology in Digital and Smart Cities," Future Internet, MDPI, vol. 12(2), pages 1-27, January.
    13. Ghasemi, A. & Shayeghi, H. & Moradzadeh, M. & Nooshyar, M., 2016. "A novel hybrid algorithm for electricity price and load forecasting in smart grids with demand-side management," Applied Energy, Elsevier, vol. 177(C), pages 40-59.
    14. Cheng, Jianquan & Bertolini, Luca, 2013. "Measuring urban job accessibility with distance decay, competition and diversity," Journal of Transport Geography, Elsevier, vol. 30(C), pages 100-109.
    15. Meissner, Joern & Strauss, Arne, 2012. "Network revenue management with inventory-sensitive bid prices and customer choice," European Journal of Operational Research, Elsevier, vol. 216(2), pages 459-468.
    16. Østergaard, P.A. & Lund, H. & Thellufsen, J.Z. & Sorknæs, P. & Mathiesen, B.V., 2022. "Review and validation of EnergyPLAN," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Miriam Müller & Oscar Reutter, 2017. "Vision Development towards a Sustainable North Rhine-Westphalia 2030 in a Science-Practice-Dialogue," Sustainability, MDPI, vol. 9(7), pages 1-27, June.
    18. Nian Liu & Cheng Wang & Minyang Cheng & Jie Wang, 2016. "A Privacy-Preserving Distributed Optimal Scheduling for Interconnected Microgrids," Energies, MDPI, vol. 9(12), pages 1-18, December.
    19. Xiao, Liye & Shao, Wei & Liang, Tulu & Wang, Chen, 2016. "A combined model based on multiple seasonal patterns and modified firefly algorithm for electrical load forecasting," Applied Energy, Elsevier, vol. 167(C), pages 135-153.
    20. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:201:y:2017:i:c:p:371-381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.