IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-022-04857-3.html
   My bibliography  Save this article

Incorporating causality in energy consumption forecasting using deep neural networks

Author

Listed:
  • Kshitij Sharma

    (Norwegian University of Science and Technology)

  • Yogesh K. Dwivedi

    (Swansea University
    Pune & Symbiosis International (Deemed University))

  • Bhimaraya Metri

    (Indian Institute of Management Nagpur)

Abstract

Forecasting energy demand has been a critical process in various decision support systems regarding consumption planning, distribution strategies, and energy policies. Traditionally, forecasting energy consumption or demand methods included trend analyses, regression, and auto-regression. With advancements in machine learning methods, algorithms such as support vector machines, artificial neural networks, and random forests became prevalent. In recent times, with an unprecedented improvement in computing capabilities, deep learning algorithms are increasingly used to forecast energy consumption/demand. In this contribution, a relatively novel approach is employed to use long-term memory. Weather data was used to forecast the energy consumption from three datasets, with an additional piece of information in the deep learning architecture. This additional information carries the causal relationships between the weather indicators and energy consumption. This architecture with the causal information is termed as entangled long short term memory. The results show that the entangled long short term memory outperforms the state-of-the-art deep learning architecture (bidirectional long short term memory). The theoretical and practical implications of these results are discussed in terms of decision-making and energy management systems.

Suggested Citation

  • Kshitij Sharma & Yogesh K. Dwivedi & Bhimaraya Metri, 2024. "Incorporating causality in energy consumption forecasting using deep neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 537-572, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04857-3
    DOI: 10.1007/s10479-022-04857-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04857-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04857-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04857-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.