IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v339y2024i1d10.1007_s10479-022-04857-3.html
   My bibliography  Save this article

Incorporating causality in energy consumption forecasting using deep neural networks

Author

Listed:
  • Kshitij Sharma

    (Norwegian University of Science and Technology)

  • Yogesh K. Dwivedi

    (Swansea University
    Pune & Symbiosis International (Deemed University))

  • Bhimaraya Metri

    (Indian Institute of Management Nagpur)

Abstract

Forecasting energy demand has been a critical process in various decision support systems regarding consumption planning, distribution strategies, and energy policies. Traditionally, forecasting energy consumption or demand methods included trend analyses, regression, and auto-regression. With advancements in machine learning methods, algorithms such as support vector machines, artificial neural networks, and random forests became prevalent. In recent times, with an unprecedented improvement in computing capabilities, deep learning algorithms are increasingly used to forecast energy consumption/demand. In this contribution, a relatively novel approach is employed to use long-term memory. Weather data was used to forecast the energy consumption from three datasets, with an additional piece of information in the deep learning architecture. This additional information carries the causal relationships between the weather indicators and energy consumption. This architecture with the causal information is termed as entangled long short term memory. The results show that the entangled long short term memory outperforms the state-of-the-art deep learning architecture (bidirectional long short term memory). The theoretical and practical implications of these results are discussed in terms of decision-making and energy management systems.

Suggested Citation

  • Kshitij Sharma & Yogesh K. Dwivedi & Bhimaraya Metri, 2024. "Incorporating causality in energy consumption forecasting using deep neural networks," Annals of Operations Research, Springer, vol. 339(1), pages 537-572, August.
  • Handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04857-3
    DOI: 10.1007/s10479-022-04857-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-022-04857-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-022-04857-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fernando Perez-cruz & Julio Afonso-rodriguez & Javier Giner, 2003. "Estimating GARCH models using support vector machines," Quantitative Finance, Taylor & Francis Journals, vol. 3(3), pages 163-172.
    2. Hong Pan & Hanxun Zhou, 2020. "Study on convolutional neural network and its application in data mining and sales forecasting for E-commerce," Electronic Commerce Research, Springer, vol. 20(2), pages 297-320, June.
    3. Ahmet Murat Ozbayoglu & Mehmet Ugur Gudelek & Omer Berat Sezer, 2020. "Deep Learning for Financial Applications : A Survey," Papers 2002.05786, arXiv.org.
    4. Pascal Wichmann & Alexandra Brintrup & Simon Baker & Philip Woodall & Duncan McFarlane, 2020. "Extracting supply chain maps from news articles using deep neural networks," International Journal of Production Research, Taylor & Francis Journals, vol. 58(17), pages 5320-5336, September.
    5. Arcos-Aviles, Diego & Pascual, Julio & Guinjoan, Francesc & Marroyo, Luis & Sanchis, Pablo & Marietta, Martin P., 2017. "Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting," Applied Energy, Elsevier, vol. 205(C), pages 69-84.
    6. Ajay Kumar & Ram D. Gopal & Ravi Shankar & Kim Hua Tan, 2022. "Fraudulent review detection model focusing on emotional expressions and explicit aspects : investigating the potential of feature engineering," Post-Print hal-03630420, HAL.
    7. Geng, Ruibin & Bose, Indranil & Chen, Xi, 2015. "Prediction of financial distress: An empirical study of listed Chinese companies using data mining," European Journal of Operational Research, Elsevier, vol. 241(1), pages 236-247.
    8. Braun, M.R. & Altan, H. & Beck, S.B.M., 2014. "Using regression analysis to predict the future energy consumption of a supermarket in the UK," Applied Energy, Elsevier, vol. 130(C), pages 305-313.
    9. Maaouane, Mohamed & Zouggar, Smail & Krajačić, Goran & Zahboune, Hassan, 2021. "Modelling industry energy demand using multiple linear regression analysis based on consumed quantity of goods," Energy, Elsevier, vol. 225(C).
    10. Davydenko, Andrey & Fildes, Robert, 2013. "Measuring forecasting accuracy: The case of judgmental adjustments to SKU-level demand forecasts," International Journal of Forecasting, Elsevier, vol. 29(3), pages 510-522.
    11. Efimova, Olga & Serletis, Apostolos, 2014. "Energy markets volatility modelling using GARCH," Energy Economics, Elsevier, vol. 43(C), pages 264-273.
    12. Robert Engle, 2001. "GARCH 101: The Use of ARCH/GARCH Models in Applied Econometrics," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 157-168, Fall.
    13. Narayana Darapaneni & Anwesh Reddy Paduri & Himank Sharma & Milind Manjrekar & Nutan Hindlekar & Pranali Bhagat & Usha Aiyer & Yogesh Agarwal, 2022. "Stock Price Prediction using Sentiment Analysis and Deep Learning for Indian Markets," Papers 2204.05783, arXiv.org.
    14. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    15. Demir, Sumeyra & Mincev, Krystof & Kok, Koen & Paterakis, Nikolaos G., 2021. "Data augmentation for time series regression: Applying transformations, autoencoders and adversarial networks to electricity price forecasting," Applied Energy, Elsevier, vol. 304(C).
    16. Justin Sirignano & Rama Cont, 2019. "Universal features of price formation in financial markets: perspectives from deep learning," Quantitative Finance, Taylor & Francis Journals, vol. 19(9), pages 1449-1459, September.
    17. Jillian M. Clements & Di Xu & Nooshin Yousefi & Dmitry Efimov, 2020. "Sequential Deep Learning for Credit Risk Monitoring with Tabular Financial Data," Papers 2012.15330, arXiv.org.
    18. Tso, Geoffrey K.F. & Guan, Jingjing, 2014. "A multilevel regression approach to understand effects of environment indicators and household features on residential energy consumption," Energy, Elsevier, vol. 66(C), pages 722-731.
    19. J. Harold & J. Cullinan & S. Lyons, 2017. "The income elasticity of household energy demand: a quantile regression analysis," Applied Economics, Taylor & Francis Journals, vol. 49(54), pages 5570-5578, November.
    20. Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60.
    21. Ranyard, J.C. & Fildes, R. & Hu, Tun-I, 2015. "Reassessing the scope of OR practice: The Influences of Problem Structuring Methods and the Analytics Movement," European Journal of Operational Research, Elsevier, vol. 245(1), pages 1-13.
    22. Kim, A. & Yang, Y. & Lessmann, S. & Ma, T. & Sung, M.-C. & Johnson, J.E.V., 2020. "Can deep learning predict risky retail investors? A case study in financial risk behavior forecasting," European Journal of Operational Research, Elsevier, vol. 283(1), pages 217-234.
    23. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    24. Marcin Fałdziński & Piotr Fiszeder & Witold Orzeszko, 2020. "Forecasting Volatility of Energy Commodities: Comparison of GARCH Models with Support Vector Regression," Energies, MDPI, vol. 14(1), pages 1-18, December.
    25. Ozturk, Ilhan & Aslan, Alper & Kalyoncu, Huseyin, 2010. "Energy consumption and economic growth relationship: Evidence from panel data for low and middle income countries," Energy Policy, Elsevier, vol. 38(8), pages 4422-4428, August.
    26. Ajay Kumar & Ravi Shankar & Alok Choudhary & Lakshman S. Thakur, 2016. "A big data MapReduce framework for fault diagnosis in cloud-based manufacturing," International Journal of Production Research, Taylor & Francis Journals, vol. 54(23), pages 7060-7073, December.
    27. Alejandro J. del Real & Fernando Dorado & Jaime Durán, 2020. "Energy Demand Forecasting Using Deep Learning: Applications for the French Grid," Energies, MDPI, vol. 13(9), pages 1-15, May.
    28. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    29. Tej Bahadur Shahi & Ashish Shrestha & Arjun Neupane & William Guo, 2020. "Stock Price Forecasting with Deep Learning: A Comparative Study," Mathematics, MDPI, vol. 8(9), pages 1-15, August.
    30. Kayhan, Selim & Adiguzel, Uğur & Bayat, Tayfur & Lebe, Fuat, 2010. "Causality Relationship between Real GDP and Electricity Consumption in Romania (2001-2010)," Journal for Economic Forecasting, Institute for Economic Forecasting, vol. 0(4), pages 169-183, December.
    31. Murat, Yetis Sazi & Ceylan, Halim, 2006. "Use of artificial neural networks for transport energy demand modeling," Energy Policy, Elsevier, vol. 34(17), pages 3165-3172, November.
    32. Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
    33. Mortenson, Michael J. & Doherty, Neil F. & Robinson, Stewart, 2015. "Operational research from Taylorism to Terabytes: A research agenda for the analytics age," European Journal of Operational Research, Elsevier, vol. 241(3), pages 583-595.
    34. Suat Ozturk & Feride Ozturk, 2018. "Forecasting Energy Consumption of Turkey by Arima Model," Journal of Asian Scientific Research, Asian Economic and Social Society, vol. 8(2), pages 52-60, February.
    35. Ergen, Ibrahim & Rizvanoghlu, Islam, 2016. "Asymmetric impacts of fundamentals on the natural gas futures volatility: An augmented GARCH approach," Energy Economics, Elsevier, vol. 56(C), pages 64-74.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Longbing Cao, 2021. "AI in Finance: Challenges, Techniques and Opportunities," Papers 2107.09051, arXiv.org.
    2. Lee, Yoonjae & Ha, Byeongmin & Hwangbo, Soonho, 2022. "Generative model-based hybrid forecasting model for renewable electricity supply using long short-term memory networks: A case study of South Korea's energy transition policy," Renewable Energy, Elsevier, vol. 200(C), pages 69-87.
    3. Weronika Ormaniec & Marcin Pitera & Sajad Safarveisi & Thorsten Schmidt, 2022. "Estimating value at risk: LSTM vs. GARCH," Papers 2207.10539, arXiv.org.
    4. Van Belle, Jente & Guns, Tias & Verbeke, Wouter, 2021. "Using shared sell-through data to forecast wholesaler demand in multi-echelon supply chains," European Journal of Operational Research, Elsevier, vol. 288(2), pages 466-479.
    5. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    6. Javier Sánchez García & Salvador Cruz Rambaud, 2022. "A GARCH approach to model short‐term interest rates: Evidence from Spanish economy," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(2), pages 1621-1632, April.
    7. Tim Bollerslev, 2008. "Glossary to ARCH (GARCH)," CREATES Research Papers 2008-49, Department of Economics and Business Economics, Aarhus University.
    8. Sobrie, Léon & Verschelde, Marijn & Hennebel, Veerle & Roets, Bart, 2023. "Capturing complexity over space and time via deep learning: An application to real-time delay prediction in railways," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1201-1217.
    9. Chang, Chia-Lin & McAleer, Michael & Wang, Yanghuiting, 2018. "Testing Co-Volatility spillovers for natural gas spot, futures and ETF spot using dynamic conditional covariances," Energy, Elsevier, vol. 151(C), pages 984-997.
    10. Mihaela Simionescu & Yuriy Bilan & Emília Krajňáková & Dalia Streimikiene & Stanisław Gędek, 2019. "Renewable Energy in the Electricity Sector and GDP per Capita in the European Union," Energies, MDPI, vol. 12(13), pages 1-15, June.
    11. Allen, David E. & McAleer, Michael & Powell, Robert J. & Singh, Abhay K., 2017. "Volatility Spillovers from Australia's major trading partners across the GFC," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 159-175.
    12. Huang, Tao & Fildes, Robert & Soopramanien, Didier, 2019. "Forecasting retailer product sales in the presence of structural change," European Journal of Operational Research, Elsevier, vol. 279(2), pages 459-470.
    13. Feride OZTURK & Suat OZTURK, 2018. "Exploring the Nexus of Coal Consumption, Economic Growth, Energy Prices and Technological Innovation in Turkey," Asian Economic and Financial Review, Asian Economic and Social Society, vol. 8(12), pages 1406-1414, December.
    14. Marcelo Scherer Perlin & Mauro Mastella & Daniel Francisco Vancin & Henrique Pinto Ramos, 2021. "A GARCH Tutorial with R," RAC - Revista de Administração Contemporânea (Journal of Contemporary Administration), ANPAD - Associação Nacional de Pós-Graduação e Pesquisa em Administração, vol. 25(1), pages 200088-2000.
    15. Brucke, Karoline & Arens, Stefan & Telle, Jan-Simon & Steens, Thomas & Hanke, Benedikt & von Maydell, Karsten & Agert, Carsten, 2021. "A non-intrusive load monitoring approach for very short-term power predictions in commercial buildings," Applied Energy, Elsevier, vol. 292(C).
    16. Athanasopoulos, George & Hyndman, Rob J. & Kourentzes, Nikolaos & Petropoulos, Fotios, 2017. "Forecasting with temporal hierarchies," European Journal of Operational Research, Elsevier, vol. 262(1), pages 60-74.
    17. Asl, Mahdi Ghaemi & Canarella, Giorgio & Miller, Stephen M., 2021. "Dynamic asymmetric optimal portfolio allocation between energy stocks and energy commodities: Evidence from clean energy and oil and gas companies," Resources Policy, Elsevier, vol. 71(C).
    18. Stephanos Papadamou & Thomas Markopoulos, 2014. "Investigating Intraday Interdependence Between Gold, Silver and Three Major Currencies: the Euro, British Pound and Japanese Yen," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 20(4), pages 399-410, November.
    19. Feuerriegel, Stefan & Gordon, Julius, 2019. "News-based forecasts of macroeconomic indicators: A semantic path model for interpretable predictions," European Journal of Operational Research, Elsevier, vol. 272(1), pages 162-175.
    20. Caraiani, Chirața & Lungu, Camelia I. & Dascălu, Cornelia, 2015. "Energy consumption and GDP causality: A three-step analysis for emerging European countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 198-210.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:339:y:2024:i:1:d:10.1007_s10479-022-04857-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.