IDEAS home Printed from https://ideas.repec.org/a/eee/jrpoli/v39y2014icp32-41.html
   My bibliography  Save this article

An improved wavelet–ARIMA approach for forecasting metal prices

Author

Listed:
  • Kriechbaumer, Thomas
  • Angus, Andrew
  • Parsons, David
  • Rivas Casado, Monica

Abstract

Metal price forecasts support estimates of future profits from metal exploration and mining and inform purchasing, selling and other day-to-day activities in the metals industry. Past research has shown that cyclical behaviour is a dominant characteristic of metal prices. Wavelet analysis enables to capture this cyclicality by decomposing a time series into its frequency and time domain. This study assesses the usefulness of an improved combined wavelet-autoregressive integrated moving average (ARIMA) approach for forecasting monthly prices of aluminium, copper, lead and zinc. The performance of ARIMA models in forecasting metal prices is demonstrated to be increased substantially through a wavelet-based multiresolution analysis (MRA) prior to ARIMA model fitting. The approach demonstrated in this paper is novel because it identifies the optimal combination of the wavelet transform type, wavelet function and the number of decomposition levels used in the MRA and thereby increases the forecast accuracy significantly. The results showed that, on average, the proposed framework has the potential to increase the accuracy of one month ahead forecasts by $53/t for aluminium, $126/t for copper, $50/t for lead and $51/t for zinc, relative to classic ARIMA models. This highlights the importance of taking into account cyclicality when forecasting metal prices.

Suggested Citation

  • Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
  • Handle: RePEc:eee:jrpoli:v:39:y:2014:i:c:p:32-41
    DOI: 10.1016/j.resourpol.2013.10.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142071300086X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.resourpol.2013.10.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Helmut Lütkepohl & Fang Xu, 2012. "The role of the log transformation in forecasting economic variables," Empirical Economics, Springer, vol. 42(3), pages 619-638, June.
    2. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    3. Roberts, Mark C., 2009. "Duration and characteristics of metal price cycles," Resources Policy, Elsevier, vol. 34(3), pages 87-102, September.
    4. Dooley, Gillian & Lenihan, Helena, 2005. "An assessment of time series methods in metal price forecasting," Resources Policy, Elsevier, vol. 30(3), pages 208-217, September.
    5. Luís Aguiar-Conraria & Maria Soares, 2011. "Oil and the macroeconomy: using wavelets to analyze old issues," Empirical Economics, Springer, vol. 40(3), pages 645-655, May.
    6. Davidson, Russell & Labys, Walter C & Lesourd, Jean-Baptiste, 1998. "Wavelet Analysis of Commodity Price Behavior," Computational Economics, Springer;Society for Computational Economics, vol. 11(1-2), pages 103-128, April.
    7. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    8. Jammazi, Rania & Aloui, Chaker, 2010. "Wavelet decomposition and regime shifts: Assessing the effects of crude oil shocks on stock market returns," Energy Policy, Elsevier, vol. 38(3), pages 1415-1435, March.
    9. Yousefi, Shahriar & Weinreich, Ilona & Reinarz, Dominik, 2005. "Wavelet-based prediction of oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 265-275.
    10. Tonn, Victor Lux & Li, H.C. & McCarthy, Joseph, 2010. "Wavelet domain correlation between the futures prices of natural gas and oil," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(4), pages 408-414, November.
    11. Patrick M. Crowley, 2007. "A Guide To Wavelets For Economists," Journal of Economic Surveys, Wiley Blackwell, vol. 21(2), pages 207-267, April.
    12. Deaton, Angus & Miller, Ron, 1996. "International Commodity Prices, Macroeconomic Performance and Politics in Sub-Saharan Africa," Journal of African Economies, Centre for the Study of African Economies, vol. 5(3), pages 99-191, October.
    13. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    14. Radetzki,Marian, 2008. "A Handbook of Primary Commodities in the Global Economy," Cambridge Books, Cambridge University Press, number 9780521880206, Junio.
    15. Davutyan, Nurhan & Roberts, Mark C., 1994. "Cyclicality in metal prices," Resources Policy, Elsevier, vol. 20(1), pages 49-57, March.
    16. Naccache, Théo, 2011. "Oil price cycles and wavelets," Energy Economics, Elsevier, vol. 33(2), pages 338-352, March.
    17. Catalão, J.P.S. & Pousinho, H.M.I. & Mendes, V.M.F., 2011. "Short-term wind power forecasting in Portugal by neural networks and wavelet transform," Renewable Energy, Elsevier, vol. 36(4), pages 1245-1251.
    18. Labys, W C & Lesourd, J B & Badillo, D, 1998. "The existence of metal price cycles," Resources Policy, Elsevier, vol. 24(3), pages 147-155, September.
    19. Angus Deaton, 1999. "Commodity Prices and Growth in Africa," Journal of Economic Perspectives, American Economic Association, vol. 13(3), pages 23-40, Summer.
    20. Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," Energy Economics, Elsevier, vol. 39(C), pages 13-27.
    21. Clinton Watkins & Michael McAleer, 2004. "Econometric modelling of non‐ferrous metal prices," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 651-701, December.
    22. Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
    23. Fernandez, Viviana, 2007. "Wavelet- and SVM-based forecasts: An analysis of the U.S. metal and materials manufacturing industry," Resources Policy, Elsevier, vol. 32(1-2), pages 80-89.
    24. Cashin, Paul & McDermott, C. John & Scott, Alasdair, 2002. "Booms and slumps in world commodity prices," Journal of Development Economics, Elsevier, vol. 69(1), pages 277-296, October.
    25. Schlüter, Stephan & Deuschle, Carola, 2010. "Using wavelets for time series forecasting: Does it pay off?," FAU Discussion Papers in Economics 04/2010, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    26. Viviana Fernandez, 2008. "Traditional versus novel forecasting techniques: how much do we gain?," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 27(7), pages 637-648.
    27. Dehn, Jan, 2000. "The effects on growth of commodity price uncertainty and shocks," Policy Research Working Paper Series 2455, The World Bank.
    28. Tan, Zhongfu & Zhang, Jinliang & Wang, Jianhui & Xu, Jun, 2010. "Day-ahead electricity price forecasting using wavelet transform combined with ARIMA and GARCH models," Applied Energy, Elsevier, vol. 87(11), pages 3606-3610, November.
    29. Gençay, Ramazan & Gençay, Ramazan & Selçuk, Faruk & Whitcher, Brandon J., 2001. "An Introduction to Wavelets and Other Filtering Methods in Finance and Economics," Elsevier Monographs, Elsevier, edition 1, number 9780122796708.
    30. Connor Jeff & Rossiter Rosemary, 2005. "Wavelet Transforms and Commodity Prices," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 9(1), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seiler, Volker, 2024. "The relationship between Chinese and FOB prices of rare earth elements – Evidence in the time and frequency domain," The Quarterly Review of Economics and Finance, Elsevier, vol. 95(C), pages 160-179.
    2. Rossen, Anja, 2015. "What are metal prices like? Co-movement, price cycles and long-run trends," Resources Policy, Elsevier, vol. 45(C), pages 255-276.
    3. Ehrlich, Lars G., 2018. "What drives nickel prices: A structural VAR approach," HWWI Research Papers 186, Hamburg Institute of International Economics (HWWI).
    4. Mei-Hsiu Chen & Ken W. Clements & Grace Gao, 2017. "Three Facts About World Metal Prices," Economics Discussion / Working Papers 17-05, The University of Western Australia, Department of Economics.
    5. Monge, Manuel & Gil-Alana, Luis A., 2021. "Lithium industry and the U.S. crude oil prices. A fractional cointegration VAR and a Continuous Wavelet Transform analysis," Resources Policy, Elsevier, vol. 72(C).
    6. Josué M. Polanco-Martínez & Luis M. Abadie, 2016. "Analyzing Crude Oil Spot Price Dynamics versus Long Term Future Prices: A Wavelet Analysis Approach," Energies, MDPI, vol. 9(12), pages 1-19, December.
    7. Ying Fan & Abdullah Yavas, 2023. "Price Dynamics in Public and Private Commercial Real Estate Markets," The Journal of Real Estate Finance and Economics, Springer, vol. 67(1), pages 150-190, July.
    8. Baffes, John & Kabundi, Alain, 2023. "Commodity price shocks: Order within chaos?," Resources Policy, Elsevier, vol. 83(C).
    9. Sánchez Lasheras, Fernando & de Cos Juez, Francisco Javier & Suárez Sánchez, Ana & Krzemień, Alicja & Riesgo Fernández, Pedro, 2015. "Forecasting the COMEX copper spot price by means of neural networks and ARIMA models," Resources Policy, Elsevier, vol. 45(C), pages 37-43.
    10. Rua, António & Nunes, Luis C., 2012. "A wavelet-based assessment of market risk: The emerging markets case," The Quarterly Review of Economics and Finance, Elsevier, vol. 52(1), pages 84-92.
    11. Chang, Chun-Ping & Lee, Chien-Chiang, 2015. "Do oil spot and futures prices move together?," Energy Economics, Elsevier, vol. 50(C), pages 379-390.
    12. He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
    13. Claudio-Quiroga, Gloria & Gil-Alana, Luis A. & Maiza-Larrarte, Andoni, 2023. "Mineral prices persistence and the development of a new energy vehicle industry in China: A fractional integration approach," Resources Policy, Elsevier, vol. 82(C).
    14. Xiao Jing Cai & Zheng Fang & Youngho Chang & Shuairu Tian & Shigeyuki Hamori, 2020. "Co-movements in commodity markets and implications in diversification benefits," Empirical Economics, Springer, vol. 58(2), pages 393-425, February.
    15. Shovon Sengupta & Tanujit Chakraborty & Sunny Kumar Singh, 2023. "Forecasting CPI inflation under economic policy and geopolitical uncertainties," Papers 2401.00249, arXiv.org, revised Jul 2024.
    16. George P. Papaioannou & Christos Dikaiakos & George Evangelidis & Panagiotis G. Papaioannou & Dionysios S. Georgiadis, 2015. "Co-Movement Analysis of Italian and Greek Electricity Market Wholesale Prices by Using a Wavelet Approach," Energies, MDPI, vol. 8(10), pages 1-30, October.
    17. Reboredo, Juan C. & Rivera-Castro, Miguel A., 2014. "Wavelet-based evidence of the impact of oil prices on stock returns," International Review of Economics & Finance, Elsevier, vol. 29(C), pages 145-176.
    18. Jammazi, Rania, 2012. "Cross dynamics of oil-stock interactions: A redundant wavelet analysis," Energy, Elsevier, vol. 44(1), pages 750-777.
    19. Xiaojie Xu, 2018. "Causal structure among US corn futures and regional cash prices in the time and frequency domain," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(13), pages 2455-2480, October.
    20. Huang, Shupei & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2017. "Do oil price asymmetric effects on the stock market persist in multiple time horizons?," Applied Energy, Elsevier, vol. 185(P2), pages 1799-1808.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jrpoli:v:39:y:2014:i:c:p:32-41. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/30467 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.