IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v9y2021i3p45-d508525.html
   My bibliography  Save this article

Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model

Author

Listed:
  • Simon Schnürch

    (Department of Financial Mathematics, Fraunhofer Institute for Industrial Mathematics ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
    Department of Mathematics, University of Kaiserslautern, Gottlieb-Daimler-Straße 48, 67663 Kaiserslautern, Germany)

  • Torsten Kleinow

    (Department of Actuarial Mathematics and Statistics, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK
    The Maxwell Institute for Mathematical Sciences, School of Mathematical and Computer Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK)

  • Ralf Korn

    (Department of Financial Mathematics, Fraunhofer Institute for Industrial Mathematics ITWM, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
    Department of Mathematics, University of Kaiserslautern, Gottlieb-Daimler-Straße 48, 67663 Kaiserslautern, Germany)

Abstract

We introduce four variants of the common age effect model proposed by Kleinow, which describes the mortality rates of multiple populations. Our model extensions are based on the assumption of multiple common age effects, each of which is shared only by a subgroup of all considered populations. This makes the models more realistic while still keeping them as parsimonious as possible, improving the goodness of fit. We apply different clustering methods to identify suitable subgroups. Some of the algorithms are borrowed from the unsupervised learning literature, while others are more domain-specific. In particular, we propose and investigate a new model with fuzzy clustering, in which each population’s individual age effect is a linear combination of a small number of age effects. Due to their good interpretability, our clustering-based models also allow some insights in the historical mortality dynamics of the populations. Numerical results and graphical illustrations of the considered models and their performance in-sample as well as out-of-sample are provided.

Suggested Citation

  • Simon Schnürch & Torsten Kleinow & Ralf Korn, 2021. "Clustering-Based Extensions of the Common Age Effect Multi-Population Mortality Model," Risks, MDPI, vol. 9(3), pages 1-32, March.
  • Handle: RePEc:gam:jrisks:v:9:y:2021:i:3:p:45-:d:508525
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/9/3/45/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/9/3/45/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Debón, A. & Chaves, L. & Haberman, S. & Villa, F., 2017. "Characterization of between-group inequality of longevity in European Union countries," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 151-165.
    2. Chen, Hua & MacMinn, Richard & Sun, Tao, 2015. "Multi-population mortality models: A factor copula approach," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 135-146.
    3. France Meslé & Jacques Vallin, 2002. "Mortalité en Europe : la divergence Est-Ouest," Population (french edition), Institut National d'Études Démographiques (INED), vol. 57(1), pages 171-212.
    4. Sweeting, P. J., 2011. "A Trend-Change Extension of the Cairns-Blake-Dowd Model," Annals of Actuarial Science, Cambridge University Press, vol. 5(2), pages 143-162, September.
    5. Andrew Cairns & David Blake & Kevin Dowd & Guy Coughlan & David Epstein & Alen Ong & Igor Balevich, 2009. "A Quantitative Comparison of Stochastic Mortality Models Using Data From England and Wales and the United States," North American Actuarial Journal, Taylor & Francis Journals, vol. 13(1), pages 1-35.
    6. Rui Zhou & Johnny Siu-Hang Li & Ken Seng Tan, 2013. "Pricing Standardized Mortality Securitizations: A Two-Population Model With Transitory Jump Effects," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 80(3), pages 733-774, September.
    7. Johnny Siu-Hang Li & Wai-Sum Chan & Rui Zhou, 2017. "Semicoherent Multipopulation Mortality Modeling: The Impact on Longevity Risk Securitization," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(3), pages 1025-1065, September.
    8. Jie Wen & Torsten Kleinow & Andrew J. G. Cairns, 2020. "Trends in Canadian Mortality by Pension Level: Evidence from the CPP and QPP," North American Actuarial Journal, Taylor & Francis Journals, vol. 24(4), pages 533-561, October.
    9. Villegas, Andrés M. & Haberman, Steven & Kaishev, Vladimir K. & Millossovich, Pietro, 2017. "A Comparative Study Of Two-Population Models For The Assessment Of Basis Risk In Longevity Hedges," ASTIN Bulletin, Cambridge University Press, vol. 47(3), pages 631-679, September.
    10. Rob Hyndman & Heather Booth & Farah Yasmeen, 2013. "Coherent Mortality Forecasting: The Product-Ratio Method With Functional Time Series Models," Demography, Springer;Population Association of America (PAA), vol. 50(1), pages 261-283, February.
    11. Ronald Lee, 2000. "The Lee-Carter Method for Forecasting Mortality, with Various Extensions and Applications," North American Actuarial Journal, Taylor & Francis Journals, vol. 4(1), pages 80-91.
    12. Giuseppe Giordano & Steven Haberman & Maria Russolillo, 2019. "Coherent modeling of mortality patterns for age-specific subgroups," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 189-204, June.
    13. Kleinow, Torsten, 2015. "A common age effect model for the mortality of multiple populations," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 147-152.
    14. Kleinow, Torsten & Cairns, Andrew J.G., 2013. "Mortality and smoking prevalence: An empirical investigation in ten developed countries," British Actuarial Journal, Cambridge University Press, vol. 18(2), pages 452-466, July.
    15. Nan Li & Ronald Lee, 2005. "Coherent mortality forecasts for a group of populations: An extension of the lee-carter method," Demography, Springer;Population Association of America (PAA), vol. 42(3), pages 575-594, August.
    16. Bent Nielsen & J.P. Nielsen, 2010. "Identification and forecasting in the Lee-Carter model," Economics Series Working Papers 2010-W07, University of Oxford, Department of Economics.
    17. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin, 2006. "Pricing Death: Frameworks for the Valuation and Securitization of Mortality Risk," ASTIN Bulletin, Cambridge University Press, vol. 36(1), pages 79-120, May.
    18. Hatzopoulos, P. & Haberman, S., 2013. "Common mortality modeling and coherent forecasts. An empirical analysis of worldwide mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 52(2), pages 320-337.
    19. Renshaw, A.E. & Haberman, S., 2006. "A cohort-based extension to the Lee-Carter model for mortality reduction factors," Insurance: Mathematics and Economics, Elsevier, vol. 38(3), pages 556-570, June.
    20. Carter, Lawrence R. & Lee, Ronald D., 1992. "Modeling and forecasting US sex differentials in mortality," International Journal of Forecasting, Elsevier, vol. 8(3), pages 393-411, November.
    21. Brouhns, Natacha & Denuit, Michel & Vermunt, Jeroen K., 2002. "A Poisson log-bilinear regression approach to the construction of projected lifetables," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 373-393, December.
    22. Cairns, Andrew J.G. & Blake, David & Dowd, Kevin & Coughlan, Guy D. & Khalaf-Allah, Marwa, 2011. "Bayesian Stochastic Mortality Modelling for Two Populations," ASTIN Bulletin, Cambridge University Press, vol. 41(1), pages 29-59, May.
    23. Li, Johnny Siu-Hang & Zhou, Rui & Hardy, Mary, 2015. "A step-by-step guide to building two-population stochastic mortality models," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 121-134.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Perla & Salvatore Scognamiglio, 2023. "Locally-coherent multi-population mortality modelling via neural networks," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 157-176, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blake, David & Cairns, Andrew J.G., 2021. "Longevity risk and capital markets: The 2019-20 update," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 395-439.
    2. Blake, David & El Karoui, Nicole & Loisel, Stéphane & MacMinn, Richard, 2018. "Longevity risk and capital markets: The 2015–16 update," Insurance: Mathematics and Economics, Elsevier, vol. 78(C), pages 157-173.
    3. Bravo, Jorge M. & Ayuso, Mercedes & Holzmann, Robert & Palmer, Edward, 2021. "Addressing the life expectancy gap in pension policy," Insurance: Mathematics and Economics, Elsevier, vol. 99(C), pages 200-221.
    4. de Jong, Piet & Tickle, Leonie & Xu, Jianhui, 2016. "Coherent modeling of male and female mortality using Lee–Carter in a complex number framework," Insurance: Mathematics and Economics, Elsevier, vol. 71(C), pages 130-137.
    5. Ahmadi, Seyed Saeed & Li, Johnny Siu-Hang, 2014. "Coherent mortality forecasting with generalized linear models: A modified time-transformation approach," Insurance: Mathematics and Economics, Elsevier, vol. 59(C), pages 194-221.
    6. Katrien Antonio & Anastasios Bardoutsos & Wilbert Ouburg, 2015. "Bayesian Poisson log-bilinear models for mortality projections with multiple populations," Working Papers Department of Accountancy, Finance and Insurance (AFI), Leuven 485564, KU Leuven, Faculty of Economics and Business (FEB), Department of Accountancy, Finance and Insurance (AFI), Leuven.
    7. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2023. "Thirty years on: A review of the Lee–Carter method for forecasting mortality," International Journal of Forecasting, Elsevier, vol. 39(3), pages 1033-1049.
    8. Marie-Pier Bergeron-Boucher & Søren Kjærgaard & James E. Oeppen & James W. Vaupel, 2019. "The impact of the choice of life table statistics when forecasting mortality," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 41(43), pages 1235-1268.
    9. Basellini, Ugofilippo & Camarda, Carlo Giovanni & Booth, Heather, 2022. "Thirty years on: A review of the Lee-Carter method for forecasting mortality," SocArXiv 8u34d, Center for Open Science.
    10. Selin Özen & Şule Şahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Risks, MDPI, vol. 9(2), pages 1-19, February.
    11. David Blake & Marco Morales & Enrico Biffis & Yijia Lin & Andreas Milidonis, 2017. "Special Edition: Longevity 10 – The Tenth International Longevity Risk and Capital Markets Solutions Conference," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 84(S1), pages 515-532, April.
    12. Bozikas, Apostolos & Pitselis, Georgios, 2020. "Incorporating crossed classification credibility into the Lee–Carter model for multi-population mortality data," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 353-368.
    13. Hunt, Andrew & Blake, David, 2015. "Modelling longevity bonds: Analysing the Swiss Re Kortis bond," Insurance: Mathematics and Economics, Elsevier, vol. 63(C), pages 12-29.
    14. Doukhan, P. & Pommeret, D. & Rynkiewicz, J. & Salhi, Y., 2017. "A class of random field memory models for mortality forecasting," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 97-110.
    15. Massimiliano Menzietti & Maria Francesca Morabito & Manuela Stranges, 2019. "Mortality Projections for Small Populations: An Application to the Maltese Elderly," Risks, MDPI, vol. 7(2), pages 1-25, March.
    16. Andrew J.G. Cairns & Malene Kallestrup-Lamb & Carsten P.T. Rosenskjold & David Blake & Kevin Dowd, 2016. "Modelling Socio-Economic Differences in the Mortality of Danish Males Using a New Affluence Index," CREATES Research Papers 2016-14, Department of Economics and Business Economics, Aarhus University.
    17. Hung-Tsung Hsiao & Chou-Wen Wang & I.-Chien Liu & Ko-Lun Kung, 2024. "Mortality improvement neural-network models with autoregressive effects," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 49(2), pages 363-383, April.
    18. Guibert, Quentin & Lopez, Olivier & Piette, Pierrick, 2019. "Forecasting mortality rate improvements with a high-dimensional VAR," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 255-272.
    19. Kenneth Wong & Jackie Li & Sixian Tang, 2020. "A modified common factor model for modelling mortality jointly for both sexes," Journal of Population Research, Springer, vol. 37(2), pages 181-212, June.
    20. Selin Ozen & c{S}ule c{S}ahin, 2021. "A Two-Population Mortality Model to Assess Longevity Basis Risk," Papers 2101.06690, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:9:y:2021:i:3:p:45-:d:508525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.