IDEAS home Printed from https://ideas.repec.org/a/bla/sysdyn/v37y2021i4p283-309.html
   My bibliography  Save this article

A Bayesian approach to calibrate system dynamics models using Hamiltonian Monte Carlo

Author

Listed:
  • Jair Andrade
  • Jim Duggan

Abstract

Model calibration is an essential test that dynamic hypotheses must pass in order to serve as tools for decision‐making. In short, it is the search for a match between actual and simulated behaviours using parameter inference. Here, we approach such an inference process from a Bayesian perspective. Under this paradigm, we provide statements about the parameters (viewed as random variables) and data in probabilistic terms. These statements stem from a posterior distribution whose solution is often found via statistical simulation. However, the uptake of these methods within the system dynamics field has been somewhat limited, and state‐of‐the‐art algorithms have not been explored. Therefore, we introduce Hamiltonian Monte Carlo (HMC), an efficient algorithm that outperforms random‐walk methods in exploring complex parameter spaces. We apply HMC to calibrate an SEIR model and frame the process within a practical workflow. In doing so, we also recommend visualisation tools that facilitate the communication of results. © 2021 The Authors. System Dynamics Review published by John Wiley & Sons Ltd on behalf of System Dynamics Society.

Suggested Citation

  • Jair Andrade & Jim Duggan, 2021. "A Bayesian approach to calibrate system dynamics models using Hamiltonian Monte Carlo," System Dynamics Review, System Dynamics Society, vol. 37(4), pages 283-309, October.
  • Handle: RePEc:bla:sysdyn:v:37:y:2021:i:4:p:283-309
    DOI: 10.1002/sdr.1693
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sdr.1693
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sdr.1693?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Carpenter, Bob & Gelman, Andrew & Hoffman, Matthew D. & Lee, Daniel & Goodrich, Ben & Betancourt, Michael & Brubaker, Marcus & Guo, Jiqiang & Li, Peter & Riddell, Allen, 2017. "Stan: A Probabilistic Programming Language," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 76(i01).
    2. Christina E. Mills & James M. Robins & Marc Lipsitch, 2004. "Transmissibility of 1918 pandemic influenza," Nature, Nature, vol. 432(7019), pages 904-906, December.
    3. Saleh, Mohamed & Oliva, Rogelio & Kampmann, Christian Erik & Davidsen, Pål I., 2010. "A comprehensive analytical approach for policy analysis of system dynamics models," European Journal of Operational Research, Elsevier, vol. 203(3), pages 673-683, June.
    4. Oliva, Rogelio, 2003. "Model calibration as a testing strategy for system dynamics models," European Journal of Operational Research, Elsevier, vol. 151(3), pages 552-568, December.
    5. Navid Ghaffarzadegan & Hazhir Rahmandad, 2020. "Simulation‐based estimation of the early spread of COVID‐19 in Iran: actual versus confirmed cases," System Dynamics Review, System Dynamics Society, vol. 36(1), pages 101-129, January.
    6. C. P. Farrington & M. N. Kanaan & N. J. Gay, 2001. "Estimation of the basic reproduction number for infectious diseases from age‐stratified serological survey data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 50(3), pages 251-292.
    7. John P. Ansah & Victoria Koh & Chi†Tsun Chiu & Choy†Lye Chei & Yi Zeng & Zhao†Xue Yin & Xiao†Ming Shi & David B. Matchar, 2017. "Projecting the Number of Elderly with Cognitive Impairment in China Using a Multi†State Dynamic Population Model," System Dynamics Review, System Dynamics Society, vol. 33(2), pages 89-111, April.
    8. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    9. David R. Keith & John D. Sterman & Jeroen Struben, 2017. "Supply constraints and waitlists in new product diffusion," Post-Print hal-02312141, HAL.
    10. Rogelio Oliva & John D. Sterman, 2001. "Cutting Corners and Working Overtime: Quality Erosion in the Service Industry," Management Science, INFORMS, vol. 47(7), pages 894-914, July.
    11. John Sterman, 2018. "System dynamics at sixty: the path forward," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 5-47, January.
    12. Jonah Gabry & Daniel Simpson & Aki Vehtari & Michael Betancourt & Andrew Gelman, 2019. "Visualization in Bayesian workflow," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(2), pages 389-402, February.
    13. repec:dau:papers:123456789/3549 is not listed on IDEAS
    14. Mark Girolami & Ben Calderhead, 2011. "Riemann manifold Langevin and Hamiltonian Monte Carlo methods," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 73(2), pages 123-214, March.
    15. David R. Keith & John D. Sterman & Jeroen Struben, 2017. "Supply constraints and waitlists in new product diffusion," System Dynamics Review, System Dynamics Society, vol. 33(3-4), pages 254-279, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ina Marie Raible & Christina Holweg & Gerald Reiner & Christoph Teller, 2024. "Returnable packaging systems and store operations: Processes, costs, and benefits," Journal of Industrial Ecology, Yale University, vol. 28(3), pages 439-454, June.
    2. Lane, David C. & Rouwette, Etiënne A.J.A., 2023. "Towards a behavioural system dynamics: Exploring its scope and delineating its promise," European Journal of Operational Research, Elsevier, vol. 306(2), pages 777-794.
    3. Duggan, Jim & Andrade, Jair & Murphy, Thomas Brendan & Gleeson, James P. & Walsh, Cathal & Nolan, Philip, 2024. "An age-cohort simulation model for generating COVID-19 scenarios: A study from Ireland's pandemic response," European Journal of Operational Research, Elsevier, vol. 313(1), pages 343-358.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rogelio Oliva, 2020. "On structural dominance analysis," System Dynamics Review, System Dynamics Society, vol. 36(1), pages 8-28, January.
    2. Negar Darabi & Niyousha Hosseinichimeh, 2020. "System dynamics modeling in health and medicine: a systematic literature review," System Dynamics Review, System Dynamics Society, vol. 36(1), pages 29-73, January.
    3. Duggan, Jim & Andrade, Jair & Murphy, Thomas Brendan & Gleeson, James P. & Walsh, Cathal & Nolan, Philip, 2024. "An age-cohort simulation model for generating COVID-19 scenarios: A study from Ireland's pandemic response," European Journal of Operational Research, Elsevier, vol. 313(1), pages 343-358.
    4. Jeroen Struben, 2020. "The coronavirus disease (COVID‐19) pandemic: simulation‐based assessment of outbreak responses and postpeak strategies," System Dynamics Review, System Dynamics Society, vol. 36(3), pages 247-293, July.
    5. Rogelio Oliva, 2016. "Structural dominance analysis of large and stochastic models," System Dynamics Review, System Dynamics Society, vol. 32(1), pages 26-51, January.
    6. Gökçe Esenduran & John V. Gray & Burcu Tan, 2022. "A Dynamic Analysis of Supply Chain Risk Management and Extended Payment Terms," Production and Operations Management, Production and Operations Management Society, vol. 31(3), pages 1394-1417, March.
    7. Barakat, Bilal Fouad & Dharamshi, Ameer & Alkema, Leontine & Antoninis, Manos, 2021. "Adjusted Bayesian Completion Rates (ABC) Estimation," SocArXiv at368, Center for Open Science.
    8. Sergey Naumov & David R. Keith & Charles H. Fine, 2020. "Unintended Consequences of Automated Vehicles and Pooling for Urban Transportation Systems," Production and Operations Management, Production and Operations Management Society, vol. 29(5), pages 1354-1371, May.
    9. Navid Ghaffarzadegan & Richard C. Larson, 2018. "SD meets OR: a new synergy to address policy problems," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 327-353, January.
    10. Andrew J Tanentzap & Samuel Cottingham & Jérémy Fonvielle & Isobel Riley & Lucy M Walker & Samuel G Woodman & Danai Kontou & Christian M Pichler & Erwin Reisner & Laurent Lebreton, 2021. "Microplastics and anthropogenic fibre concentrations in lakes reflect surrounding land use," PLOS Biology, Public Library of Science, vol. 19(9), pages 1-18, September.
    11. Hannaford, Naomi E. & Heaps, Sarah E. & Nye, Tom M.W. & Curtis, Thomas P. & Allen, Ben & Golightly, Andrew & Wilkinson, Darren J., 2023. "A sparse Bayesian hierarchical vector autoregressive model for microbial dynamics in a wastewater treatment plant," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    12. John Pastor Ansah & Shawn Tan Yi Wei & Tessa Lui Shi Min, 2020. "An evaluation of the impact of aggressive diabetes and hypertension management on chronic kidney diseases at the population level: a simulation analysis," System Dynamics Review, System Dynamics Society, vol. 36(4), pages 497-522, October.
    13. Armenia, Stefano & Franco, Eduardo & Iandolo, Francesca & Maielli, Giuliano & Vito, Pietro, 2024. "Zooming in and out the landscape: Artificial intelligence and system dynamics in business and management," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    14. Federico Cosenz & Guido Noto, 2016. "Applying System Dynamics Modelling to Strategic Management: A Literature Review," Systems Research and Behavioral Science, Wiley Blackwell, vol. 33(6), pages 703-741, November.
    15. Eszter Moln'ar & D'enes Csala, 2022. "Topology-dependence of propagation mechanisms in the production network," Papers 2205.08874, arXiv.org.
    16. Ameer Dharamshi & Bilal Barakat & Leontine Alkema & Manos Antoninis, 2022. "A Bayesian model for estimating Sustainable Development Goal indicator 4.1.2: School completion rates," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1822-1864, November.
    17. Rojas, Helder & Dias, David, 2021. "Transfer of macroeconomic shocks in stress tests modeling," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    18. Jim Duggan, 2020. "Exploring the opportunity of using machine learning to support the system dynamics method: Comment on the paper by Edali and Yücel," Systems Research and Behavioral Science, Wiley Blackwell, vol. 37(6), pages 959-963, November.
    19. Helder Rojas & David Dias, 2018. "Transmission of Macroeconomic Shocks to Risk Parameters: Their uses in Stress Testing," Papers 1809.07401, arXiv.org, revised May 2019.
    20. Aldo Gardini & Enrico Fabrizi & Carlo Trivisano, 2022. "Poverty and inequality mapping based on a unit‐level log‐normal mixture model," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(4), pages 2073-2096, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:sysdyn:v:37:y:2021:i:4:p:283-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://onlinelibrary.wiley.com/journal/10.1111/0883-7066 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.