IDEAS home Printed from https://ideas.repec.org/a/eee/ecofin/v61y2022ics1062940822000572.html
   My bibliography  Save this article

Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices?

Author

Listed:
  • Sadorsky, Perry

Abstract

Solar energy is one of the fastest growing sources of electricity generation. Forecasting solar stock prices is important for investors and venture capitalists interested in the renewable energy sector. This paper uses tree-based machine learning methods to forecast the direction of solar stock prices. The feature set used in prediction includes a selection of well-known technical indicators, silver prices, silver price volatility, and oil price volatility. The solar stock price direction prediction accuracy of random forests, bagging, support vector machines, and extremely randomized trees is much higher than that of logit. For a forecast horizon of between 8 and 20 days, random forests, bagging, support vector machines, and extremely randomized trees achieve a prediction accuracy greater than 85%. Although not as prominent as technical indicators like MA200, WAD, and MA20, oil price volatility and silver price volatility are also important predictors. An investment portfolio trading strategy based on trading signals generated from the extremely randomized trees stock price direction prediction outperforms a simple buy and hold strategy. These results demonstrate the accuracy of using tree-based machine learning methods to forecast the direction of solar stock prices and adds to the broader literature on using machine learning techniques to forecast stock prices.

Suggested Citation

  • Sadorsky, Perry, 2022. "Forecasting solar stock prices using tree-based machine learning classification: How important are silver prices?," The North American Journal of Economics and Finance, Elsevier, vol. 61(C).
  • Handle: RePEc:eee:ecofin:v:61:y:2022:i:c:s1062940822000572
    DOI: 10.1016/j.najef.2022.101705
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1062940822000572
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.najef.2022.101705?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gupta, Kartick, 2017. "Do economic and societal factors influence the financial performance of alternative energy firms?," Energy Economics, Elsevier, vol. 65(C), pages 172-182.
    2. Pönkä, Harri, 2016. "Real oil prices and the international sign predictability of stock returns," Finance Research Letters, Elsevier, vol. 17(C), pages 79-87.
    3. Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
    4. Sadorsky, Perry, 2012. "Modeling renewable energy company risk," Energy Policy, Elsevier, vol. 40(C), pages 39-48.
    5. Elie, Bouri & Naji, Jalkh & Dutta, Anupam & Uddin, Gazi Salah, 2019. "Gold and crude oil as safe-haven assets for clean energy stock indices: Blended copulas approach," Energy, Elsevier, vol. 178(C), pages 544-553.
    6. Reboredo, Juan C. & Rivera-Castro, Miguel A. & Ugolini, Andrea, 2017. "Wavelet-based test of co-movement and causality between oil and renewable energy stock prices," Energy Economics, Elsevier, vol. 61(C), pages 241-252.
    7. Dutta, Anupam & Bouri, Elie & Noor, Md Hasib, 2018. "Return and volatility linkages between CO2 emission and clean energy stock prices," Energy, Elsevier, vol. 164(C), pages 803-810.
    8. Reboredo, Juan C. & Ugolini, Andrea, 2018. "The impact of energy prices on clean energy stock prices. A multivariate quantile dependence approach," Energy Economics, Elsevier, vol. 76(C), pages 136-152.
    9. Reboredo, Juan C., 2015. "Is there dependence and systemic risk between oil and renewable energy stock prices?," Energy Economics, Elsevier, vol. 48(C), pages 32-45.
    10. Nyberg, Henri & Pönkä, Harri, 2016. "International sign predictability of stock returns: The role of the United States," Economic Modelling, Elsevier, vol. 58(C), pages 323-338.
    11. Managi, Shunsuke & Okimoto, Tatsuyoshi, 2013. "Does the price of oil interact with clean energy prices in the stock market?," Japan and the World Economy, Elsevier, vol. 27(C), pages 1-9.
    12. Lohrmann, Christoph & Luukka, Pasi, 2019. "Classification of intraday S&P500 returns with a Random Forest," International Journal of Forecasting, Elsevier, vol. 35(1), pages 390-407.
    13. Thabang Mokoaleli-Mokoteli & Shaun Ramsumar & Hima Vadapalli, 2019. "The Efficiency Of Ensemble Classifiers In Predicting The Johannesburg Stock Exchange All-Share Index Direction," Journal of Financial Management, Markets and Institutions (JFMMI), World Scientific Publishing Co. Pte. Ltd., vol. 7(02), pages 1-18, December.
    14. Wang, Yudong & Liu, Li & Wu, Chongfeng, 2020. "Forecasting commodity prices out-of-sample: Can technical indicators help?," International Journal of Forecasting, Elsevier, vol. 36(2), pages 666-683.
    15. Libo Yin & Qingyuan Yang & Zhi Su, 2017. "Predictability of structural co-movement in commodity prices: the role of technical indicators," Quantitative Finance, Taylor & Francis Journals, vol. 17(5), pages 795-812, May.
    16. Basak, Suryoday & Kar, Saibal & Saha, Snehanshu & Khaidem, Luckyson & Dey, Sudeepa Roy, 2019. "Predicting the direction of stock market prices using tree-based classifiers," The North American Journal of Economics and Finance, Elsevier, vol. 47(C), pages 552-567.
    17. Christopher J. Neely & David E. Rapach & Jun Tu & Guofu Zhou, 2014. "Forecasting the Equity Risk Premium: The Role of Technical Indicators," Management Science, INFORMS, vol. 60(7), pages 1772-1791, July.
    18. Perry Sadorsky, 2021. "Predicting Gold and Silver Price Direction Using Tree-Based Classifiers," JRFM, MDPI, vol. 14(5), pages 1-21, April.
    19. Henriques, Irene & Sadorsky, Perry, 2008. "Oil prices and the stock prices of alternative energy companies," Energy Economics, Elsevier, vol. 30(3), pages 998-1010, May.
    20. Reboredo, Juan C. & Quintela, Miguel & Otero, Luis A., 2017. "Do investors pay a premium for going green? Evidence from alternative energy mutual funds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 512-520.
    21. Maghyereh, Aktham I. & Awartani, Basel & Abdoh, Hussein, 2019. "The co-movement between oil and clean energy stocks: A wavelet-based analysis of horizon associations," Energy, Elsevier, vol. 169(C), pages 895-913.
    22. Leung, Mark T. & Daouk, Hazem & Chen, An-Sing, 2000. "Forecasting stock indices: a comparison of classification and level estimation models," International Journal of Forecasting, Elsevier, vol. 16(2), pages 173-190.
    23. Perry Sadorsky, 2021. "A Random Forests Approach to Predicting Clean Energy Stock Prices," JRFM, MDPI, vol. 14(2), pages 1-20, January.
    24. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578.
    25. Nyberg, Henri, 2011. "Forecasting the direction of the US stock market with dynamic binary probit models," International Journal of Forecasting, Elsevier, vol. 27(2), pages 561-578, April.
    26. Yin, Libo & Yang, Qingyuan, 2016. "Predicting the oil prices: Do technical indicators help?," Energy Economics, Elsevier, vol. 56(C), pages 338-350.
    27. Sendhil Mullainathan & Jann Spiess, 2017. "Machine Learning: An Applied Econometric Approach," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 87-106, Spring.
    28. Bohl, Martin T. & Kaufmann, Philipp & Stephan, Patrick M., 2013. "From hero to zero: Evidence of performance reversal and speculative bubbles in German renewable energy stocks," Energy Economics, Elsevier, vol. 37(C), pages 40-51.
    29. Pushpendu Ghosh & Ariel Neufeld & Jajati Keshari Sahoo, 2020. "Forecasting directional movements of stock prices for intraday trading using LSTM and random forests," Papers 2004.10178, arXiv.org, revised Jun 2021.
    30. Uddin, Gazi Salah & Rahman, Md Lutfur & Hedström, Axel & Ahmed, Ali, 2019. "Cross-quantilogram-based correlation and dependence between renewable energy stock and other asset classes," Energy Economics, Elsevier, vol. 80(C), pages 743-759.
    31. Wen, Xiaoqian & Guo, Yanfeng & Wei, Yu & Huang, Dengshi, 2014. "How do the stock prices of new energy and fossil fuel companies correlate? Evidence from China," Energy Economics, Elsevier, vol. 41(C), pages 63-75.
    32. Kumar, Surender & Managi, Shunsuke & Matsuda, Akimi, 2012. "Stock prices of clean energy firms, oil and carbon markets: A vector autoregressive analysis," Energy Economics, Elsevier, vol. 34(1), pages 215-226.
    33. Bondia, Ripsy & Ghosh, Sajal & Kanjilal, Kakali, 2016. "International crude oil prices and the stock prices of clean energy and technology companies: Evidence from non-linear cointegration tests with unknown structural breaks," Energy, Elsevier, vol. 101(C), pages 558-565.
    34. Dawar, Ishaan & Dutta, Anupam & Bouri, Elie & Saeed, Tareq, 2021. "Crude oil prices and clean energy stock indices: Lagged and asymmetric effects with quantile regression," Renewable Energy, Elsevier, vol. 163(C), pages 288-299.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adel Hassan A. Gadhi & Shelton Peiris & David E. Allen, 2024. "Improving Volatility Forecasting: A Study through Hybrid Deep Learning Methods with WGAN," JRFM, MDPI, vol. 17(9), pages 1-20, August.
    2. Zhang, Junting & Liu, Haifei & Bai, Wei & Li, Xiaojing, 2024. "A hybrid approach of wavelet transform, ARIMA and LSTM model for the share price index futures forecasting," The North American Journal of Economics and Finance, Elsevier, vol. 69(PB).
    3. Jesús Molina‐Muñoz & Andrés Mora‐Valencia & Javier Perote, 2024. "Predicting carbon and oil price returns using hybrid models based on machine and deep learning," Intelligent Systems in Accounting, Finance and Management, John Wiley & Sons, Ltd., vol. 31(2), June.
    4. Bharat Kumar Meher & Abhishek Anand & Sunil Kumar & Ramona Birau & Manohar Sing, 2024. "Effectiveness of Random Forest Model in Predicting Stock Prices of Solar Energy Companies in India," International Journal of Energy Economics and Policy, Econjournals, vol. 14(2), pages 426-434, March.
    5. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    6. Barboza, Flavio & Altman, Edward, 2024. "Predicting financial distress in Latin American companies: A comparative analysis of logistic regression and random forest models," The North American Journal of Economics and Finance, Elsevier, vol. 72(C).
    7. Di Zhu & Yinghong Wang & Fenglin Zhang, 2022. "Energy Price Prediction Integrated with Singular Spectrum Analysis and Long Short-Term Memory Network against the Background of Carbon Neutrality," Energies, MDPI, vol. 15(21), pages 1-20, October.
    8. Yang, Qu & Yu, Yuanyuan & Dai, Dongsheng & He, Qian & Lin, Yu, 2024. "Can hybrid model improve the forecasting performance of stock price index amid COVID-19? Contextual evidence from the MEEMD-LSTM-MLP approach," The North American Journal of Economics and Finance, Elsevier, vol. 74(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Perry Sadorsky, 2021. "A Random Forests Approach to Predicting Clean Energy Stock Prices," JRFM, MDPI, vol. 14(2), pages 1-20, January.
    2. Henriques, Irene & Sadorsky, Perry, 2023. "Forecasting rare earth stock prices with machine learning," Resources Policy, Elsevier, vol. 86(PA).
    3. Perry Sadorsky, 2021. "Predicting Gold and Silver Price Direction Using Tree-Based Classifiers," JRFM, MDPI, vol. 14(5), pages 1-21, April.
    4. Syed Abul, Basher & Perry, Sadorsky, 2022. "Forecasting Bitcoin price direction with random forests: How important are interest rates, inflation, and market volatility?," MPRA Paper 113293, University Library of Munich, Germany.
    5. Tan, Xueping & Geng, Yong & Vivian, Andrew & Wang, Xinyu, 2021. "Measuring risk spillovers between oil and clean energy stocks: Evidence from a systematic framework," Resources Policy, Elsevier, vol. 74(C).
    6. Fernanda Fuentes & Rodrigo Herrera, 2020. "Dynamics of Connectedness in Clean Energy Stocks," Energies, MDPI, vol. 13(14), pages 1-19, July.
    7. Yahya, Muhammad & Ghosh, Sajal & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah, 2020. "Evaluation of cross-quantile dependence and causality between non-ferrous metals and clean energy indexes," Energy, Elsevier, vol. 202(C).
    8. Zeyi Fu & Hongli Niu & Weiqing Wang, 2023. "Market Efficiency and Cross-Correlations of Chinese New Energy Market with Other Assets: Evidence from Multifractality Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 62(3), pages 1287-1311, October.
    9. Hemrit, Wael & Benlagha, Noureddine, 2021. "Does renewable energy index respond to the pandemic uncertainty?," Renewable Energy, Elsevier, vol. 177(C), pages 336-347.
    10. Gu, Fu & Wang, Jiqiang & Guo, Jianfeng & Fan, Ying, 2020. "How the supply and demand of steam coal affect the investment in clean energy industry? Evidence from China," Resources Policy, Elsevier, vol. 69(C).
    11. Shah, Adil Ahmad & Sahay, Arvind, 2024. "Is gold a preferable diversifier of cleaner equity risk across diverse scenarios? Evidence from multidimensional connectedness and spillover measures," Energy, Elsevier, vol. 305(C).
    12. Matteo Foglia & Eliana Angelini, 2020. "Volatility Connectedness between Clean Energy Firms and Crude Oil in the COVID-19 Era," Sustainability, MDPI, vol. 12(23), pages 1-22, November.
    13. Yahya, Muhammad & Kanjilal, Kakali & Dutta, Anupam & Uddin, Gazi Salah & Ghosh, Sajal, 2021. "Can clean energy stock price rule oil price? New evidences from a regime-switching model at first and second moments," Energy Economics, Elsevier, vol. 95(C).
    14. He, Xiaojuan & Mishra, Shekhar & Aman, Ameenullah & Shahbaz, Muhammad & Razzaq, Asif & Sharif, Arshian, 2021. "The linkage between clean energy stocks and the fluctuations in oil price and financial stress in the US and Europe? Evidence from QARDL approach," Resources Policy, Elsevier, vol. 72(C).
    15. Capucine Nobletz, 2021. "Return spillovers between green energy indexes and financial markets: a first sectoral approach," EconomiX Working Papers 2021-24, University of Paris Nanterre, EconomiX.
    16. Urom, Christian & Mzoughi, Hela & Ndubuisi, Gideon & Guesmi, Khaled, 2022. "Directional predictability and time-frequency spillovers among clean energy sectors and oil price uncertainty," The Quarterly Review of Economics and Finance, Elsevier, vol. 85(C), pages 326-341.
    17. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    18. Dutta, Anupam & Bouri, Elie & Rothovius, Timo & Uddin, Gazi Salah, 2023. "Climate risk and green investments: New evidence," Energy, Elsevier, vol. 265(C).
    19. Asl, Mahdi Ghaemi & Canarella, Giorgio & Miller, Stephen M., 2021. "Dynamic asymmetric optimal portfolio allocation between energy stocks and energy commodities: Evidence from clean energy and oil and gas companies," Resources Policy, Elsevier, vol. 71(C).
    20. Niu, Hongli, 2021. "Correlations between crude oil and stocks prices of renewable energy and technology companies: A multiscale time-dependent analysis," Energy, Elsevier, vol. 221(C).

    More about this item

    Keywords

    Forecasting; Machine learning; Random forests; Solar energy; Stock prices;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • Q42 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Alternative Energy Sources
    • Q47 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy Forecasting

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecofin:v:61:y:2022:i:c:s1062940822000572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620163 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.