A multi-perspective approach to support collaborative cost management in supplier-buyer dyads
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ijpe.2021.108380
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Schniederjans, Dara G. & Curado, Carla & Khalajhedayati, Mehrnaz, 2020. "Supply chain digitisation trends: An integration of knowledge management," International Journal of Production Economics, Elsevier, vol. 220(C).
- Guido Voigt & Karl Inderfurth, 2012. "Supply chain coordination with information sharing in the presence of trust and trustworthiness," IISE Transactions, Taylor & Francis Journals, vol. 44(8), pages 637-654.
- Sreekumar R. Bhaskaran & V. Krishnan, 2009. "Effort, Revenue, and Cost Sharing Mechanisms for Collaborative New Product Development," Management Science, INFORMS, vol. 55(7), pages 1152-1169, July.
- Hau L. Lee & Kut C. So & Christopher S. Tang, 2000. "The Value of Information Sharing in a Two-Level Supply Chain," Management Science, INFORMS, vol. 46(5), pages 626-643, May.
- Ibusuki, Ugo & Kaminski, Paulo Carlos, 2007. "Product development process with focus on value engineering and target-costing: A case study in an automotive company," International Journal of Production Economics, Elsevier, vol. 105(2), pages 459-474, February.
- Schulze, Manuel & Seuring, Stefan & Ewering, Christian, 2012. "Applying activity-based costing in a supply chain environment," International Journal of Production Economics, Elsevier, vol. 135(2), pages 716-725.
- Verlinden, B. & Duflou, J.R. & Collin, P. & Cattrysse, D., 2008. "Cost estimation for sheet metal parts using multiple regression and artificial neural networks: A case study," International Journal of Production Economics, Elsevier, vol. 111(2), pages 484-492, February.
- Miriam Wilhelm & Jörg Sydow, 2018. "Managing Coopetition in Supplier Networks – A Paradox Perspective," Journal of Supply Chain Management, Institute for Supply Management, vol. 54(3), pages 22-41, July.
- De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
- H. Kahn & A. W. Marshall, 1953. "Methods of Reducing Sample Size in Monte Carlo Computations," Operations Research, INFORMS, vol. 1(5), pages 263-278, November.
- Liesiö, Juuso & Mild, Pekka & Salo, Ahti, 2008. "Robust portfolio modeling with incomplete cost information and project interdependencies," European Journal of Operational Research, Elsevier, vol. 190(3), pages 679-695, November.
- Kraus, Mathias & Feuerriegel, Stefan & Oztekin, Asil, 2020. "Deep learning in business analytics and operations research: Models, applications and managerial implications," European Journal of Operational Research, Elsevier, vol. 281(3), pages 628-641.
- Stefan Wager & Susan Athey, 2018.
"Estimation and Inference of Heterogeneous Treatment Effects using Random Forests,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(523), pages 1228-1242, July.
- Wager, Stefan & Athey, Susan, 2017. "Estimation and Inference of Heterogeneous Treatment Effects Using Random Forests," Research Papers 3576, Stanford University, Graduate School of Business.
- Chunxia Yu & T.N. Wong, 2015. "A multi-agent architecture for multi-product supplier selection in consideration of the synergy between products," International Journal of Production Research, Taylor & Francis Journals, vol. 53(20), pages 6059-6082, October.
- Hyndman, Rob J. & Koehler, Anne B., 2006.
"Another look at measures of forecast accuracy,"
International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
- Rob J. Hyndman & Anne B. Koehler, 2005. "Another Look at Measures of Forecast Accuracy," Monash Econometrics and Business Statistics Working Papers 13/05, Monash University, Department of Econometrics and Business Statistics.
- Grosse, E. H. & Glock, C. H., 2015. "The effect of worker learning on manual order picking processes," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 69316, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
- Tsan‐Ming Choi & Stein W. Wallace & Yulan Wang, 2018. "Big Data Analytics in Operations Management," Production and Operations Management, Production and Operations Management Society, vol. 27(10), pages 1868-1883, October.
- Elisabetta Raguseo & Claudio Vitari & Federico Pigni, 2020. "Profiting from big data analytics: The moderating roles of industry concentration and firm size," Post-Print hal-03511381, HAL.
- Loyer, Jean-Loup & Henriques, Elsa & Fontul, Mihail & Wiseall, Steve, 2016. "Comparison of Machine Learning methods applied to the estimation of manufacturing cost of jet engine components," International Journal of Production Economics, Elsevier, vol. 178(C), pages 109-119.
- Albert Y. Ha, 2001. "Supplier‐buyer contracting: Asymmetric cost information and cutoff level policy for buyer participation," Naval Research Logistics (NRL), John Wiley & Sons, vol. 48(1), pages 41-64, February.
- Raguseo, Elisabetta & Vitari, Claudio & Pigni, Federico, 2020. "Profiting from big data analytics: The moderating roles of industry concentration and firm size," International Journal of Production Economics, Elsevier, vol. 229(C).
- Jeffrey H. Dyer & Kentaro Nobeoka, 2000. "Creating and managing a high‐performance knowledge‐sharing network: the Toyota case," Strategic Management Journal, Wiley Blackwell, vol. 21(3), pages 345-367, March.
- Velibor V. Mišić & Georgia Perakis, 2020. "Data Analytics in Operations Management: A Review," Manufacturing & Service Operations Management, INFORMS, vol. 22(1), pages 158-169, January.
- de Cos, Javier & Sanchez, Fernando & Ortega, Francisco & Montequin, Vicente, 2008. "Rapid cost estimation of metallic components for the aerospace industry," International Journal of Production Economics, Elsevier, vol. 112(1), pages 470-482, March.
- Um, Ki-Hyun & Kim, Sang-Man, 2019. "The effects of supply chain collaboration on performance and transaction cost advantage: The moderation and nonlinear effects of governance mechanisms," International Journal of Production Economics, Elsevier, vol. 217(C), pages 97-111.
- Chahal, Hardeep & Gupta, Mahesh & Bhan, Namrita & Cheng, T.C.E., 2020. "Operations management research grounded in the resource-based view: A meta-analysis," International Journal of Production Economics, Elsevier, vol. 230(C).
- Tsai, Wen-Hsien & Yang, Chih-Hao & Chang, Jui-Chu & Lee, Hsiu-Li, 2014. "An Activity-Based Costing decision model for life cycle assessment in green building projects," European Journal of Operational Research, Elsevier, vol. 238(2), pages 607-619.
- Cavalieri, Sergio & Maccarrone, Paolo & Pinto, Roberto, 2004. "Parametric vs. neural network models for the estimation of production costs: A case study in the automotive industry," International Journal of Production Economics, Elsevier, vol. 91(2), pages 165-177, September.
- Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
- Grosse, Eric H. & Glock, Christoph H., 2015. "The effect of worker learning on manual order picking processes," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 882-890.
- Caputo, Antonio C. & Pelagagge, Pacifico M., 2008. "Parametric and neural methods for cost estimation of process vessels," International Journal of Production Economics, Elsevier, vol. 112(2), pages 934-954, April.
- Elisabetta Raguseo & Claudio Vitari & Federico Pigni, 2020. "Profiting from big data analytics: The moderating roles of industry concentration and firm size," Post-Print hal-03032504, HAL.
- Frank Bodendorf & Manuel Lutz & Jörg Franke, 2021. "Valuation and pricing of software licenses to support supplier–buyer negotiations: A case study in the automotive industry," Managerial and Decision Economics, John Wiley & Sons, Ltd., vol. 42(7), pages 1686-1702, October.
- Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Correction: Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 408(6815), pages 1012-1012, December.
- De Giovanni, Pietro, 2020. "Blockchain and smart contracts in supply chain management: A game theoretic model," International Journal of Production Economics, Elsevier, vol. 228(C).
- Kim, Minkyun & Chai, Sangmi, 2017. "The impact of supplier innovativeness, information sharing and strategic sourcing on improving supply chain agility: Global supply chain perspective," International Journal of Production Economics, Elsevier, vol. 187(C), pages 42-52.
- Dubey, Rameshwar & Gunasekaran, Angappa & Childe, Stephen J. & Bryde, David J. & Giannakis, Mihalis & Foropon, Cyril & Roubaud, David & Hazen, Benjamin T., 2020. "Big data analytics and artificial intelligence pathway to operational performance under the effects of entrepreneurial orientation and environmental dynamism: A study of manufacturing organisations," International Journal of Production Economics, Elsevier, vol. 226(C).
- Piramuthu, Selwyn, 2004. "Evaluating feature selection methods for learning in data mining applications," European Journal of Operational Research, Elsevier, vol. 156(2), pages 483-494, July.
- Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
- Raguseo, Elisabetta, 2018. "Big data technologies: An empirical investigation on their adoption, benefits and risks for companies," International Journal of Information Management, Elsevier, vol. 38(1), pages 187-195.
- Martí, Joana M. Comas & Tancrez, Jean-Sébastien & Seifert, Ralf W., 2015. "Carbon footprint and responsiveness trade-offs in supply chain network design," International Journal of Production Economics, Elsevier, vol. 166(C), pages 129-142.
- Bo Ju & Xiaojun Zhou & Lifeng Xi, 2010. "Back propagation neural network based product cost estimation at an early design stage of passenger vehicles," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 5(2), pages 190-211.
- Elisabetta Raguseo & Claudio Vitari & Federico Pigni, 2020. "Profiting from big data analytics: The moderating roles of industry concentration and firm size," Grenoble Ecole de Management (Post-Print) hal-03032504, HAL.
- Elisabetta Raguseo & Claudio Vitari & Federico Pigni, 2020. "Profiting from big data analytics: The moderating roles of industry concentration and firm size," Post-Print hal-03511355, HAL.
- Roodhooft, Filip & Konings, Jozef, 1997. "Vendor selection and evaluation an Activity Based Costing approach," European Journal of Operational Research, Elsevier, vol. 96(1), pages 97-102, January.
- Bin Shen & Tsan-Ming Choi & Stefan Minner, 2019. "A review on supply chain contracting with information considerations: information updating and information asymmetry," International Journal of Production Research, Taylor & Francis Journals, vol. 57(15-16), pages 4898-4936, August.
- Wang, Qing, 2007. "Artificial neural networks as cost engineering methods in a collaborative manufacturing environment," International Journal of Production Economics, Elsevier, vol. 109(1-2), pages 53-64, September.
- Montecchi, Matteo & Plangger, Kirk & West, Douglas C., 2021. "Supply chain transparency: A bibliometric review and research agenda," International Journal of Production Economics, Elsevier, vol. 238(C).
- Richard H. R. Hahnloser & Rahul Sarpeshkar & Misha A. Mahowald & Rodney J. Douglas & H. Sebastian Seung, 2000. "Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit," Nature, Nature, vol. 405(6789), pages 947-951, June.
- Kulmala, Harri I. & Paranko, Jari & Uusi-Rauva, Erkki, 2002. "The role of cost management in network relationships," International Journal of Production Economics, Elsevier, vol. 79(1), pages 33-43, September.
- H'mida, Fehmi & Martin, Patrick & Vernadat, Francois, 2006. "Cost estimation in mechanical production: The Cost Entity approach applied to integrated product engineering," International Journal of Production Economics, Elsevier, vol. 103(1), pages 17-35, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen Qu & Eunyoung Kim, 2024. "Reviewing the Roles of AI-Integrated Technologies in Sustainable Supply Chain Management: Research Propositions and a Framework for Future Directions," Sustainability, MDPI, vol. 16(14), pages 1-27, July.
- Frank Bodendorf & Barbara Hollweck & Jörg Franke, 2022. "Information Asymmetry in Business-to-Business Negotiations: A Game Theoretical Approach to Support Purchasing Decisions with Suppliers," Group Decision and Negotiation, Springer, vol. 31(4), pages 723-745, August.
- Bodendorf, Frank & Sauter, Maximilian & Franke, Jörg, 2023. "A mixed methods approach to analyze and predict supply disruptions by combining causal inference and deep learning," International Journal of Production Economics, Elsevier, vol. 256(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Duffner, Fabian & Mauler, Lukas & Wentker, Marc & Leker, Jens & Winter, Martin, 2021. "Large-scale automotive battery cell manufacturing: Analyzing strategic and operational effects on manufacturing costs," International Journal of Production Economics, Elsevier, vol. 232(C).
- Hossein Tarighi & Zeynab Nourbakhsh Hosseiny & Mohammad Reza Abbaszadeh & Grzegorz Zimon & Darya Haghighat, 2022. "How Do Financial Distress Risk and Related Party Transactions Affect Financial Reporting Quality? Empirical Evidence from Iran," Risks, MDPI, vol. 10(3), pages 1-23, February.
- Abdul-Hamid, Asma-Qamaliah & Ali, Mohd Helmi & Osman, Lokhman Hakim & Tseng, Ming-Lang & Lim, Ming K., 2022. "Industry 4.0 quasi-effect between circular economy and sustainability: Palm oil industry," International Journal of Production Economics, Elsevier, vol. 253(C).
- Saeed, Abubakr & Riaz, Hammad & Baloch, Muhammad Saad, 2022. "Does big data utilization improve firm legitimacy?," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
- Ponta, Linda & Puliga, Gloria & Manzini, Raffaella & Cincotti, Silvano, 2022. "Sustainability-oriented innovation and co-patenting role in agri-food sector: Empirical analysis with patents," Technological Forecasting and Social Change, Elsevier, vol. 178(C).
- Oleksandr Melnychenko, 2020. "Is Artificial Intelligence Ready to Assess an Enterprise’s Financial Security?," JRFM, MDPI, vol. 13(9), pages 1-19, August.
- Johnson, Michael D. & Kirchain, Randolph E., 2009. "Quantifying the effects of product family decisions on material selection: A process-based costing approach," International Journal of Production Economics, Elsevier, vol. 120(2), pages 653-668, August.
- R Fildes & K Nikolopoulos & S F Crone & A A Syntetos, 2008. "Forecasting and operational research: a review," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(9), pages 1150-1172, September.
- Erkip, Nesim Kohen, 2023. "Can accessing much data reshape the theory? Inventory theory under the challenge of data-driven systems," European Journal of Operational Research, Elsevier, vol. 308(3), pages 949-959.
- Chen, Jing & Pun, Hubert & Zhang, Qiao, 2023. "Eliminate demand information disadvantage in a supplier encroachment supply chain with information acquisition," European Journal of Operational Research, Elsevier, vol. 305(2), pages 659-673.
- Chou, Jui-Sheng & Tai, Yian & Chang, Lian-Ji, 2010. "Predicting the development cost of TFT-LCD manufacturing equipment with artificial intelligence models," International Journal of Production Economics, Elsevier, vol. 128(1), pages 339-350, November.
- Pournader, Mehrdokht & Ghaderi, Hadi & Hassanzadegan, Amir & Fahimnia, Behnam, 2021. "Artificial intelligence applications in supply chain management," International Journal of Production Economics, Elsevier, vol. 241(C).
- Emilia Vann Yaroson & Soumyadeb Chowdhury & Sachin Kumar Mangla & Prasanta Kumar Dey, 2024. "Unearthing the interplay between organisational resources, knowledge and industry 4.0 analytical decision support tools to achieve sustainability and supply chain wellbeing," Annals of Operations Research, Springer, vol. 342(2), pages 1321-1368, November.
- Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
- Deng, S. & Yeh, Tsung-Han, 2011. "Using least squares support vector machines for the airframe structures manufacturing cost estimation," International Journal of Production Economics, Elsevier, vol. 131(2), pages 701-708, June.
- Bai, Danyu & Tang, Mengqian & Zhang, Zhi-Hai & Santibanez-Gonzalez, Ernesto DR, 2018. "Flow shop learning effect scheduling problem with release dates," Omega, Elsevier, vol. 78(C), pages 21-38.
- Döpke, Jörg & Fritsche, Ulrich & Müller, Karsten, 2019. "Has macroeconomic forecasting changed after the Great Recession? Panel-based evidence on forecast accuracy and forecaster behavior from Germany," Journal of Macroeconomics, Elsevier, vol. 62(C).
- Suyuan Luo & Tsan-Ming Choi, 2024. "Great partners: how deep learning and blockchain help improve business operations together," Annals of Operations Research, Springer, vol. 339(1), pages 53-78, August.
- Ahmed A Metwally & Philip S Yu & Derek Reiman & Yang Dai & Patricia W Finn & David L Perkins, 2019. "Utilizing longitudinal microbiome taxonomic profiles to predict food allergy via Long Short-Term Memory networks," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-16, February.
- Ameknassi, Lhoussaine & Aït-Kadi, Daoud & Rezg, Nidhal, 2016. "Integration of logistics outsourcing decisions in a green supply chain design: A stochastic multi-objective multi-period multi-product programming model," International Journal of Production Economics, Elsevier, vol. 182(C), pages 165-184.
More about this item
Keywords
Collaborative cost management; Purchasing; Machine learning; Decision support system; Manufacturing;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:proeco:v:245:y:2022:i:c:s092552732100356x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijpe .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.