IDEAS home Printed from https://ideas.repec.org/a/vrs/aicuec/v59y2012i2p1-13n1.html
   My bibliography  Save this article

Variables Aggregation-Source of Uncertainty in Forecasting

Author

Listed:
  • Bratu Simionescu Mihaela

    (Faculty of Cybernetics, Statistics and Economic Informatics Academy of Economic Studies Bucharest, Romania)

Abstract

The GDP forecasting presents a particularity resulted from the fact that this macroeconomic indicator can be analyzed in its quality of aggregate. Therefore, the GDP can be predicted directly using an econometric model with lagged variables represented by the aggregate component. On the other hand, the same GDP can be predicted by aggregating the forecasts of its components. The aim of this study is to find out which strategy generates the most accurate one-step-ahead prediction and if combined forecasts can be a solution of improving the forecasts accuracy. Starting from the GDP oneyear- ahead predictions made for 2009-2011 using the two strategies, measures of accuracy were calculated and the directly predicted GDP are better than those based on aggregating the components using constant and variable weights. Combined forecasts did not improve the accuracy of the predictions based on the mentioned strategies. This research is a good proof for putting the basis of considering the variables aggregation as an important source of uncertainty in forecasting.

Suggested Citation

  • Bratu Simionescu Mihaela, 2012. "Variables Aggregation-Source of Uncertainty in Forecasting," Scientific Annals of Economics and Business, Sciendo, vol. 59(2), pages 1-13, December.
  • Handle: RePEc:vrs:aicuec:v:59:y:2012:i:2:p:1-13:n:1
    DOI: 10.2478/v10316-012-0028-3
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/v10316-012-0028-3
    Download Restriction: no

    File URL: https://libkey.io/10.2478/v10316-012-0028-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hendry, David & Hubrich, Kirstin, 2006. "Forecasting Economic Aggregates by Disaggregates," CEPR Discussion Papers 5485, C.E.P.R. Discussion Papers.
    2. Clements, Michael P & Hendry, David F, 1995. "Forecasting in Cointegration Systems," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 10(2), pages 127-146, April-Jun.
    3. Hubrich, Kirstin, 2005. "Forecasting euro area inflation: Does aggregating forecasts by HICP component improve forecast accuracy?," International Journal of Forecasting, Elsevier, vol. 21(1), pages 119-136.
    4. Debby Lanser & Henk Kranendonk, 2008. "Investigating uncertainty in macroeconomic forecasts by stochastic simulation," CPB Discussion Paper 112, CPB Netherlands Bureau for Economic Policy Analysis.
    5. Neil R. Ericsson, 2001. "Forecast uncertainty in economic modeling," International Finance Discussion Papers 697, Board of Governors of the Federal Reserve System (U.S.).
    6. Marco Vega, 2004. "Policy Makers Priors and Inflation Density Forecasts," Econometrics 0403005, University Library of Munich, Germany.
    7. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    8. David Hendry & Michael P. Clements, 2010. "Forecasting from Mis-specified Models in the Presence of Unanticipated Location Shifts," Economics Series Working Papers 484, University of Oxford, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mihaela Bratu, 2011. "The Assessement Of Uncertainty In Predictions Determined By The Variables Aggregation," Annales Universitatis Apulensis Series Oeconomica, Faculty of Sciences, "1 Decembrie 1918" University, Alba Iulia, vol. 2(13), pages 1-31.
    2. Kirstin Hubrich & Guenter Beck & Massimiliano Marcellino, 2000. "Regional Inflation Dynamics within and across Euro Area Countries and a Comparison with the US," Regional and Urban Modeling 283600037, EcoMod.
    3. Jing Zeng, 2015. "Combining Country-Specific Forecasts when Forecasting Euro Area Macroeconomic Aggregates," Working Paper Series of the Department of Economics, University of Konstanz 2015-11, Department of Economics, University of Konstanz.
    4. Raffaella Giacomini, 2014. "Economic theory and forecasting: lessons from the literature," CeMMAP working papers 41/14, Institute for Fiscal Studies.
    5. Raffaella Giacomini, 2015. "Economic theory and forecasting: lessons from the literature," Econometrics Journal, Royal Economic Society, vol. 18(2), pages 22-41, June.
    6. Barakchian , Seyed Mahdi & Bayat , Saeed & Karami , Hooman, 2013. "Common Factors of CPI Sub-aggregates and Forecast of Inflation," Journal of Money and Economy, Monetary and Banking Research Institute, Central Bank of the Islamic Republic of Iran, vol. 8(4), pages 1-17, October.
    7. Andrejs Bessonovs, 2015. "Suite of Latvia's GDP forecasting models," Working Papers 2015/01, Latvijas Banka.
    8. BRATU SIMIONESCU, Mihaela, 2012. "Two Quantitative Forecasting Methods For Macroeconomic Indicators In Czech Republic," Annals of Spiru Haret University, Economic Series, Universitatea Spiru Haret, vol. 3(1), pages 71-87.
    9. Jing Zeng, 2016. "Combining country-specific forecasts when forecasting Euro area macroeconomic aggregates," Empirica, Springer;Austrian Institute for Economic Research;Austrian Economic Association, vol. 43(2), pages 415-444, May.
    10. Bloom, David E. & Canning, David & Fink, Gunther & Finlay, Jocelyn E., 2007. "Does age structure forecast economic growth?," International Journal of Forecasting, Elsevier, vol. 23(4), pages 569-585.
    11. Mihaela Bratu (Simionescu), 2013. "How to Improve the SPF Forecasts?," Acta Universitatis Danubius. OEconomica, Danubius University of Galati, issue 9(2), pages 153-165, April.
    12. Martin Feldkircher & Nico Hauzenberger, 2019. "How useful are time-varying parameter models for forecasting economic growth in CESEE?," Focus on European Economic Integration, Oesterreichische Nationalbank (Austrian Central Bank), issue Q1/19, pages 29-48.
    13. Tallman, Ellis W. & Zaman, Saeed, 2017. "Forecasting inflation: Phillips curve effects on services price measures," International Journal of Forecasting, Elsevier, vol. 33(2), pages 442-457.
    14. Juan de Dios Tena & Antoni Espasa & Gabriel Pino, 2010. "Forecasting Spanish Inflation Using the Maximum Disaggregation Level by Sectors and Geographical Areas," International Regional Science Review, , vol. 33(2), pages 181-204, April.
    15. Jing Zeng, 2014. "Forecasting Aggregates with Disaggregate Variables: Does Boosting Help to Select the Most Relevant Predictors?," Working Paper Series of the Department of Economics, University of Konstanz 2014-20, Department of Economics, University of Konstanz.
    16. Muellbauer, John & Aron, Janine, 2010. "Does aggregating forecasts by CPI component improve inflation forecast accuracy in South Africa?," CEPR Discussion Papers 7895, C.E.P.R. Discussion Papers.
    17. Janine Aron & John Muellbauer, 2008. "New methods for forecasting inflation and its sub-components: application to the USA," Economics Series Working Papers 406, University of Oxford, Department of Economics.
    18. Barrera, Carlos, 2013. "El sistema de predicción desagregada: Una evaluación de las proyecciones de inflación 2006-2011," Working Papers 2013-009, Banco Central de Reserva del Perú.
    19. Aron, Janine & Muellbauer, John, 2012. "Improving forecasting in an emerging economy, South Africa: Changing trends, long run restrictions and disaggregation," International Journal of Forecasting, Elsevier, vol. 28(2), pages 456-476.
    20. Chalmovianský, Jakub & Porqueddu, Mario & Sokol, Andrej, 2020. "Weigh(t)ing the basket: aggregate and component-based inflation forecasts for the euro area," Working Paper Series 2501, European Central Bank.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:vrs:aicuec:v:59:y:2012:i:2:p:1-13:n:1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.