IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i4p604-d1589738.html
   My bibliography  Save this article

Macro-Scale Temporal Attenuation for Electoral Forecasting: A Retrospective Study on Recent Elections

Author

Listed:
  • Alexandru Topîrceanu

    (Department of Computer and Information Technology, Politehnica University Timişoara, 300006 Timişoara, Romania)

Abstract

Forecasting election outcomes is a complex scientific challenge with notable societal implications. Existing approaches often combine statistical analysis, machine learning, and economic indicators. However, research in network science has emphasized the importance of temporal factors in the dissemination of opinions. This study presents a macro-scale temporal attenuation (TA) model, which integrates micro-scale opinion dynamics and temporal epidemic theories to enhance forecasting accuracy using pre-election poll data. The findings suggest that the timing of opinion polls significantly influences opinion fluctuations, particularly as election dates approach. Opinion “pulse” is modeled as a temporal function that increases with new poll inputs and declines during stable periods. Two practical variants of the TA model, ETA and PTA, were tested on datasets from ten elections held between 2020 and 2024 around the world. The results indicate that the TA model outperformed several statistical methods, ARIMA models, and best pollster predictions (BPPs) in six out of ten elections. The two TA implementations achieved an average forecasting error of 6.92–6.95 percentage points across all datasets, compared to 7.65 points for BPP and 14.42 points for other statistical methods, demonstrating a performance improvement of 10–83%. Additionally, the TA methods maintained robust performance even with limited poll availability. As global pre-election survey data become more accessible, the TA model is expected to serve as a valuable complement to advanced election-forecasting techniques.

Suggested Citation

  • Alexandru Topîrceanu, 2025. "Macro-Scale Temporal Attenuation for Electoral Forecasting: A Retrospective Study on Recent Elections," Mathematics, MDPI, vol. 13(4), pages 1-29, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:604-:d:1589738
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/4/604/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/4/604/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:4:p:604-:d:1589738. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.