IDEAS home Printed from https://ideas.repec.org/a/eee/intfor/v35y2019i4p1409-1423.html
   My bibliography  Save this article

Neural networks for GEFCom2017 probabilistic load forecasting

Author

Listed:
  • Dimoulkas, I.
  • Mazidi, P.
  • Herre, L.

Abstract

This report describes the forecasting model which was developed by team “4C” for the global energy forecasting competition 2017 (GEFCom2017), with some modifications added afterwards to improve its accuracy. The model is based on neural networks. Temperature scenarios obtained from historical data are used as inputs to the neural networks in order to create load scenarios, and these load scenarios are then transformed into quantiles. By using a feature selection approach that is based on a stepwise regression technique, a neural network based model is developed for each zone. Furthermore, a dynamic choice of the temperature scenarios is suggested. The feature selection and dynamic choice of the temperature scenarios can improve the quantile scores considerably, resulting in very accurate forecasts among the top teams.

Suggested Citation

  • Dimoulkas, I. & Mazidi, P. & Herre, L., 2019. "Neural networks for GEFCom2017 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1409-1423.
  • Handle: RePEc:eee:intfor:v:35:y:2019:i:4:p:1409-1423
    DOI: 10.1016/j.ijforecast.2018.09.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0169207018301778
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ijforecast.2018.09.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xie, Jingrui & Hong, Tao, 2016. "GEFCom2014 probabilistic electric load forecasting: An integrated solution with forecast combination and residual simulation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1012-1016.
    2. Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
    3. Ziel, Florian & Liu, Bidong, 2016. "Lasso estimation for GEFCom2014 probabilistic electric load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1029-1037.
    4. Hong, Tao & Pinson, Pierre & Fan, Shu, 2014. "Global Energy Forecasting Competition 2012," International Journal of Forecasting, Elsevier, vol. 30(2), pages 357-363.
    5. Wang, Pu & Liu, Bidong & Hong, Tao, 2016. "Electric load forecasting with recency effect: A big data approach," International Journal of Forecasting, Elsevier, vol. 32(3), pages 585-597.
    6. Haben, Stephen & Giasemidis, Georgios, 2016. "A hybrid model of kernel density estimation and quantile regression for GEFCom2014 probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 32(3), pages 1017-1022.
    7. Hong, Tao & Pinson, Pierre & Fan, Shu & Zareipour, Hamidreza & Troccoli, Alberto & Hyndman, Rob J., 2016. "Probabilistic energy forecasting: Global Energy Forecasting Competition 2014 and beyond," International Journal of Forecasting, Elsevier, vol. 32(3), pages 896-913.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Smyl, Slawek, 2020. "A hybrid method of exponential smoothing and recurrent neural networks for time series forecasting," International Journal of Forecasting, Elsevier, vol. 36(1), pages 75-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moreno-Carbonell, Santiago & Sánchez-Úbeda, Eugenio F. & Muñoz, Antonio, 2020. "Rethinking weather station selection for electric load forecasting using genetic algorithms," International Journal of Forecasting, Elsevier, vol. 36(2), pages 695-712.
    2. Sobhani, Masoud & Hong, Tao & Martin, Claude, 2020. "Temperature anomaly detection for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 36(2), pages 324-333.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Roach, Cameron, 2019. "Reconciled boosted models for GEFCom2017 hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1439-1450.
    5. Haben, Stephen & Giasemidis, Georgios & Ziel, Florian & Arora, Siddharth, 2019. "Short term load forecasting and the effect of temperature at the low voltage level," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1469-1484.
    6. Jingrui Xie & Tao Hong, 2017. "Wind Speed for Load Forecasting Models," Sustainability, MDPI, vol. 9(5), pages 1-12, May.
    7. Luo, Jian & Hong, Tao & Gao, Zheming & Fang, Shu-Cherng, 2023. "A robust support vector regression model for electric load forecasting," International Journal of Forecasting, Elsevier, vol. 39(2), pages 1005-1020.
    8. de Hoog, Julian & Abdulla, Khalid, 2019. "Data visualization and forecast combination for probabilistic load forecasting in GEFCom2017 final match," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1451-1459.
    9. Makridakis, Spyros & Hyndman, Rob J. & Petropoulos, Fotios, 2020. "Forecasting in social settings: The state of the art," International Journal of Forecasting, Elsevier, vol. 36(1), pages 15-28.
    10. Hyndman, Rob J., 2020. "A brief history of forecasting competitions," International Journal of Forecasting, Elsevier, vol. 36(1), pages 7-14.
    11. Antonio Bracale & Guido Carpinelli & Pasquale De Falco, 2019. "Developing and Comparing Different Strategies for Combining Probabilistic Photovoltaic Power Forecasts in an Ensemble Method," Energies, MDPI, vol. 12(6), pages 1-16, March.
    12. Hong, Tao & Xie, Jingrui & Black, Jonathan, 2019. "Global energy forecasting competition 2017: Hierarchical probabilistic load forecasting," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1389-1399.
    13. Berk, K. & Hoffmann, A. & Müller, A., 2018. "Probabilistic forecasting of industrial electricity load with regime switching behavior," International Journal of Forecasting, Elsevier, vol. 34(2), pages 147-162.
    14. Müller, Alfred & Reuber, Matthias, 2023. "A copula-based time series model for global horizontal irradiation," International Journal of Forecasting, Elsevier, vol. 39(2), pages 869-883.
    15. Severinsen, A. & Myrland, Ø., 2022. "Statistical learning to estimate energy savings from retrofitting in the Norwegian food retail market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    16. Luo, Jian & Hong, Tao & Fang, Shu-Cherng, 2018. "Benchmarking robustness of load forecasting models under data integrity attacks," International Journal of Forecasting, Elsevier, vol. 34(1), pages 89-104.
    17. Khoshrou, Abdolrahman & Pauwels, Eric J., 2019. "Short-term scenario-based probabilistic load forecasting: A data-driven approach," Applied Energy, Elsevier, vol. 238(C), pages 1258-1268.
    18. Santiago Moreno-Carbonell & Eugenio F. Sánchez-Úbeda & Antonio Muñoz, 2020. "Time Series Decomposition of the Daily Outdoor Air Temperature in Europe for Long-Term Energy Forecasting in the Context of Climate Change," Energies, MDPI, vol. 13(7), pages 1-28, March.
    19. Spyros Makridakis & Chris Fry & Fotios Petropoulos & Evangelos Spiliotis, 2022. "The Future of Forecasting Competitions: Design Attributes and Principles," INFORMS Joural on Data Science, INFORMS, vol. 1(1), pages 96-113, April.
    20. Nowotarski, Jakub & Weron, Rafał, 2016. "On the importance of the long-term seasonal component in day-ahead electricity price forecasting," Energy Economics, Elsevier, vol. 57(C), pages 228-235.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:intfor:v:35:y:2019:i:4:p:1409-1423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ijforecast .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.