IDEAS home Printed from https://ideas.repec.org/a/sae/toueco/v30y2024i8p2043-2069.html
   My bibliography  Save this article

Developing and testing the efficacy of a novel forecasting methodology: Theory and evidence from China

Author

Listed:
  • Yuhong Yang
  • Tarik Dogru
  • Chao Liang
  • Jianqiong Wang
  • Pengfei Xu

Abstract

Numerous methodologies have been offered to forecast tourism demand; however, accurate forecasting has been a major challenge for policymakers despite its critical importance for tourism planning. Therefore, we propose and test a novel forecasting methodology that combines principal component analysis (PCA) and long short-term memory (LSTM) network, along with the Baidu index, to forecast daily tourist arrivals for a popular tourist attraction in China. Word2Vec, a software tool launched by Google, is used to improve the coverage and accuracy of search keywords in the construction of the Baidu indexes. Before training the LSTM network, PCA is used to reduce noise and optimize the data. Considering the study’s timeframe, the impact of COVID-19 pandemic has also been assessed. The efficacy of the proposed forecasting methodology is verified, and the results show that the PCA-LSTM model outperforms other models in terms of prediction accuracy and stability. Theoretical and practical implications are discussed.

Suggested Citation

  • Yuhong Yang & Tarik Dogru & Chao Liang & Jianqiong Wang & Pengfei Xu, 2024. "Developing and testing the efficacy of a novel forecasting methodology: Theory and evidence from China," Tourism Economics, , vol. 30(8), pages 2043-2069, December.
  • Handle: RePEc:sae:toueco:v:30:y:2024:i:8:p:2043-2069
    DOI: 10.1177/13548166241248866
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/13548166241248866
    Download Restriction: no

    File URL: https://libkey.io/10.1177/13548166241248866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:toueco:v:30:y:2024:i:8:p:2043-2069. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.