IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4569-d845440.html
   My bibliography  Save this article

Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine

Author

Listed:
  • Adila El Maghraoui

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
    Institute of Science, Technology & Innovation (IST&I), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Younes Ledmaoui

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Oussama Laayati

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Hicham El Hadraoui

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

  • Ahmed Chebak

    (Green Tech Institute (GTI), Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco)

Abstract

The mining industry’s increased energy consumption has resulted in a slew of climate-related effects on the environment, many of which have direct implications for humanity’s survival. The forecast of mine site energy use is one of the low-cost approaches for energy conservation. Accurate predictions do indeed assist us in better understanding the source of high energy consumption and aid in making early decisions by setting expectations. Machine Learning (ML) methods are known to be the best approach for achieving desired results in prediction tasks in this area. As a result, machine learning has been used in several research involving energy predictions in operational and residential buildings. Only few research, however, has investigated the feasibility of machine learning algorithms for predicting energy use in open-pit mines. To close this gap, this work provides an application of machine learning algorithms in the RapidMiner tool for predicting energy consumption time series using real-time data obtained from a smart grid placed in an experimental open-pit mine. This study compares the performance of four machine learning (ML) algorithms for predicting daily energy consumption: Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). The models were trained, tested, and then evaluated. In order to assess the models’ performance four metrics were used in this study, namely correlation (R), mean absolute error (MAE), root mean squared error (RMSE), and root relative squared error (RRSE). The performance of the models reveals RF to be the most effective predictive model for energy forecasting in similar cases.

Suggested Citation

  • Adila El Maghraoui & Younes Ledmaoui & Oussama Laayati & Hicham El Hadraoui & Ahmed Chebak, 2022. "Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine," Energies, MDPI, vol. 15(13), pages 1-22, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4569-:d:845440
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4569/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4569/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shailendra Singh & Abdulsalam Yassine, 2018. "Big Data Mining of Energy Time Series for Behavioral Analytics and Energy Consumption Forecasting," Energies, MDPI, vol. 11(2), pages 1-26, February.
    2. Wu, Binrong & Wang, Lin & Wang, Sirui & Zeng, Yu-Rong, 2021. "Forecasting the U.S. oil markets based on social media information during the COVID-19 pandemic," Energy, Elsevier, vol. 226(C).
    3. Kim, Tae-Young & Cho, Sung-Bae, 2019. "Predicting residential energy consumption using CNN-LSTM neural networks," Energy, Elsevier, vol. 182(C), pages 72-81.
    4. Jain, Rishee K. & Smith, Kevin M. & Culligan, Patricia J. & Taylor, John E., 2014. "Forecasting energy consumption of multi-family residential buildings using support vector regression: Investigating the impact of temporal and spatial monitoring granularity on performance accuracy," Applied Energy, Elsevier, vol. 123(C), pages 168-178.
    5. Hyndman, Rob J. & Koehler, Anne B., 2006. "Another look at measures of forecast accuracy," International Journal of Forecasting, Elsevier, vol. 22(4), pages 679-688.
    6. Oussama Laayati & Hicham El Hadraoui & Nasr Guennoui & Mostafa Bouzi & Ahmed Chebak, 2022. "Smart Energy Management System: Design of a Smart Grid Test Bench for Educational Purposes," Energies, MDPI, vol. 15(7), pages 1-31, April.
    7. Frederic Marimon & Martí Casadesús, 2017. "Reasons to Adopt ISO 50001 Energy Management System," Sustainability, MDPI, vol. 9(10), pages 1-15, September.
    8. A S M Monjurul Hasan & Andrea Trianni, 2020. "A Review of Energy Management Assessment Models for Industrial Energy Efficiency," Energies, MDPI, vol. 13(21), pages 1-21, November.
    9. Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hicham El Hadraoui & Mourad Zegrari & Fatima-Ezzahra Hammouch & Nasr Guennouni & Oussama Laayati & Ahmed Chebak, 2022. "Design of a Customizable Test Bench of an Electric Vehicle Powertrain for Learning Purposes Using Model-Based System Engineering," Sustainability, MDPI, vol. 14(17), pages 1-22, September.
    2. Nabil El Bazi & Mustapha Mabrouki & Oussama Laayati & Nada Ouhabi & Hicham El Hadraoui & Fatima-Ezzahra Hammouch & Ahmed Chebak, 2023. "Generic Multi-Layered Digital-Twin-Framework-Enabled Asset Lifecycle Management for the Sustainable Mining Industry," Sustainability, MDPI, vol. 15(4), pages 1-24, February.
    3. Hubert Szczepaniuk & Edyta Karolina Szczepaniuk, 2022. "Applications of Artificial Intelligence Algorithms in the Energy Sector," Energies, MDPI, vol. 16(1), pages 1-24, December.
    4. Oussama Laayati & Hicham El Hadraoui & Adila El Magharaoui & Nabil El-Bazi & Mostafa Bouzi & Ahmed Chebak & Josep M. Guerrero, 2022. "An AI-Layered with Multi-Agent Systems Architecture for Prognostics Health Management of Smart Transformers: A Novel Approach for Smart Grid-Ready Energy Management Systems," Energies, MDPI, vol. 15(19), pages 1-28, October.
    5. Ping Chen & Jiawei Gao & Zheng Ji & Han Liang & Yu Peng, 2022. "Do Artificial Intelligence Applications Affect Carbon Emission Performance?—Evidence from Panel Data Analysis of Chinese Cities," Energies, MDPI, vol. 15(15), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    2. Zheng, Zhuang & Chen, Hainan & Luo, Xiaowei, 2019. "A Kalman filter-based bottom-up approach for household short-term load forecast," Applied Energy, Elsevier, vol. 250(C), pages 882-894.
    3. Xavier Serrano-Guerrero & Guillermo Escrivá-Escrivá & Santiago Luna-Romero & Jean-Michel Clairand, 2020. "A Time-Series Treatment Method to Obtain Electrical Consumption Patterns for Anomalies Detection Improvement in Electrical Consumption Profiles," Energies, MDPI, vol. 13(5), pages 1-23, February.
    4. Ijaz Ul Haq & Amin Ullah & Samee Ullah Khan & Noman Khan & Mi Young Lee & Seungmin Rho & Sung Wook Baik, 2021. "Sequential Learning-Based Energy Consumption Prediction Model for Residential and Commercial Sectors," Mathematics, MDPI, vol. 9(6), pages 1-17, March.
    5. Sun, Hongchang & Niu, Yanlei & Li, Chengdong & Zhou, Changgeng & Zhai, Wenwen & Chen, Zhe & Wu, Hao & Niu, Lanqiang, 2022. "Energy consumption optimization of building air conditioning system via combining the parallel temporal convolutional neural network and adaptive opposition-learning chimp algorithm," Energy, Elsevier, vol. 259(C).
    6. Luo, X.J. & Oyedele, Lukumon O. & Ajayi, Anuoluwapo O. & Akinade, Olugbenga O. & Owolabi, Hakeem A. & Ahmed, Ashraf, 2020. "Feature extraction and genetic algorithm enhanced adaptive deep neural network for energy consumption prediction in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    7. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.
    8. Yazdanie, M. & Orehounig, K., 2021. "Advancing urban energy system planning and modeling approaches: Gaps and solutions in perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    9. Jan Kaselofsky & Marika Rošā & Anda Jekabsone & Solenne Favre & Gabriel Loustalot & Michaël Toma & Jose Pablo Delgado Marín & Manuel Moreno Nicolás & Emanuele Cosenza, 2021. "Getting Municipal Energy Management Systems ISO 50001 Certified: A Study with 28 European Municipalities," Sustainability, MDPI, vol. 13(7), pages 1-17, March.
    10. R. Rueda & M. P. Cuéllar & M. Molina-Solana & Y. Guo & M. C. Pegalajar, 2019. "Generalised Regression Hypothesis Induction for Energy Consumption Forecasting," Energies, MDPI, vol. 12(6), pages 1-22, March.
    11. Peng, Lu & Wang, Lin & Xia, De & Gao, Qinglu, 2022. "Effective energy consumption forecasting using empirical wavelet transform and long short-term memory," Energy, Elsevier, vol. 238(PB).
    12. Krzysztof Drachal, 2022. "Forecasting the Crude Oil Spot Price with Bayesian Symbolic Regression," Energies, MDPI, vol. 16(1), pages 1-29, December.
    13. Khan, Waqas & Liao, Juo Yu & Walker, Shalika & Zeiler, Wim, 2022. "Impact assessment of varied data granularities from commercial buildings on exploration and learning mechanism," Applied Energy, Elsevier, vol. 319(C).
    14. Zou, Rongwei & Yang, Qiliang & Xing, Jianchun & Zhou, Qizhen & Xie, Liqiang & Chen, Wenjie, 2024. "Predicting the electric power consumption of office buildings based on dynamic and static hybrid data analysis," Energy, Elsevier, vol. 290(C).
    15. Marta Moure-Garrido & Celeste Campo & Carlos Garcia-Rubio, 2022. "Entropy-Based Anomaly Detection in Household Electricity Consumption," Energies, MDPI, vol. 15(5), pages 1-21, March.
    16. Venkatraj, V. & Dixit, M.K., 2022. "Challenges in implementing data-driven approaches for building life cycle energy assessment: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    17. Sekhar, Charan & Dahiya, Ratna, 2023. "Robust framework based on hybrid deep learning approach for short term load forecasting of building electricity demand," Energy, Elsevier, vol. 268(C).
    18. Zhong, Hai & Wang, Jiajun & Jia, Hongjie & Mu, Yunfei & Lv, Shilei, 2019. "Vector field-based support vector regression for building energy consumption prediction," Applied Energy, Elsevier, vol. 242(C), pages 403-414.
    19. La Tona, G. & Luna, M. & Di Piazza, M.C., 2024. "Day-ahead forecasting of residential electric power consumption for energy management using Long Short-Term Memory encoder–decoder model," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 224(PB), pages 63-75.
    20. Ding, Zhikun & Chen, Weilin & Hu, Ting & Xu, Xiaoxiao, 2021. "Evolutionary double attention-based long short-term memory model for building energy prediction: Case study of a green building," Applied Energy, Elsevier, vol. 288(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4569-:d:845440. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.