IDEAS home Printed from https://ideas.repec.org/a/spr/testjl/v24y2015i3p605-631.html
   My bibliography  Save this article

Optimal adaptive estimation of the relative density

Author

Listed:
  • Gaëlle Chagny
  • Claire Lacour

Abstract

This paper deals with the classical statistical problem of comparing the probability distributions of two real random variables $$X$$ X and $$X_0$$ X 0 , from a double independent sample. While most of the usual tools are based on the cumulative distribution functions $$F$$ F and $$F_0$$ F 0 of the variables, we focus on the relative density, a function recently used in two-sample problems, and defined as the density of the variable $$F_0(X)$$ F 0 ( X ) . We provide a nonparametric adaptive strategy to estimate the target function. We first define a collection of estimates using a projection on the trigonometric basis and a preliminary estimator of $$F_0$$ F 0 . An estimator is selected among this collection of projection estimates, with a criterion in the spirit of the Goldenshluger–Lepski methodology. We show the optimality of the procedure both in the oracle and the minimax sense: the convergence rate for the risk computed from an oracle inequality matches with the lower bound that we also derived. Finally, some simulations illustrate the method. Copyright Sociedad de Estadística e Investigación Operativa 2015

Suggested Citation

  • Gaëlle Chagny & Claire Lacour, 2015. "Optimal adaptive estimation of the relative density," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(3), pages 605-631, September.
  • Handle: RePEc:spr:testjl:v:24:y:2015:i:3:p:605-631
    DOI: 10.1007/s11749-015-0426-6
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11749-015-0426-6
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11749-015-0426-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cwik, Jan & Mielniczuk, Jan, 1993. "Data-dependent bandwidth choice for a grade density kernel estimate," Statistics & Probability Letters, Elsevier, vol. 16(5), pages 397-405, April.
    2. Lacour, Claire, 2008. "Nonparametric estimation of the stationary density and the transition density of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 118(2), pages 232-260, February.
    3. Comte, Fabienne & Johannes, Jan, 2012. "Adaptive functional linear regression," LIDAM Reprints ISBA 2012031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    4. Hall, Peter G. & Hyndman, Rob J., 2003. "Improved methods for bandwidth selection when estimating ROC curves," Statistics & Probability Letters, Elsevier, vol. 64(2), pages 181-189, August.
    5. Kerkyacharian, G. & Picard, D., 1992. "Density estimation in Besov spaces," Statistics & Probability Letters, Elsevier, vol. 13(1), pages 15-24, January.
    6. Masashi Sugiyama & Taiji Suzuki & Takafumi Kanamori, 2012. "Density-ratio matching under the Bregman divergence: a unified framework of density-ratio estimation," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(5), pages 1009-1044, October.
    7. B. W. Silverman, 1978. "Density Ratios, Empirical Likelihood and Cot Death," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 27(1), pages 26-33, March.
    8. Kerkyacharian, Gérard & Picard, Dominique, 1993. "Density estimation by kernel and wavelets methods: Optimality of Besov spaces," Statistics & Probability Letters, Elsevier, vol. 18(4), pages 327-336, November.
    9. Lacour, Claire, 2008. "Adaptive estimation of the transition density of a particular hidden Markov chain," Journal of Multivariate Analysis, Elsevier, vol. 99(5), pages 787-814, May.
    10. Lloyd, Chris J. & Yong, Zhou, 1999. "Kernel estimators of the ROC curve are better than empirical," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 221-228, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chesneau, Christophe & Dewan, Isha & Doosti, Hassan, 2016. "Nonparametric estimation of a quantile density function by wavelet methods," Computational Statistics & Data Analysis, Elsevier, vol. 94(C), pages 161-174.
    2. Chagny, Gaëlle & Roche, Angelina, 2016. "Adaptive estimation in the functional nonparametric regression model," Journal of Multivariate Analysis, Elsevier, vol. 146(C), pages 105-118.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elisa–María Molanes-López & Ricardo Cao, 2008. "Relative density estimation for left truncated and right censored data," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(8), pages 693-720.
    2. Kato, Takeshi, 1999. "Density estimation by truncated wavelet expansion," Statistics & Probability Letters, Elsevier, vol. 43(2), pages 159-168, June.
    3. Gérard, Kerkyacharian & Dominique, Picard, 1997. "Limit of the quadratic risk in density estimation using linear methods," Statistics & Probability Letters, Elsevier, vol. 31(4), pages 299-312, February.
    4. Koo, Ja-Yong & Kim, Woo-Chul, 1996. "Wavelet density estimation by approximation of log-densities," Statistics & Probability Letters, Elsevier, vol. 26(3), pages 271-278, February.
    5. Rufibach Kaspar, 2012. "A Smooth ROC Curve Estimator Based on Log-Concave Density Estimates," The International Journal of Biostatistics, De Gruyter, vol. 8(1), pages 1-29, April.
    6. Durastanti, Claudio, 2016. "Adaptive global thresholding on the sphere," Journal of Multivariate Analysis, Elsevier, vol. 151(C), pages 110-132.
    7. Gautier, Eric & Gaillac, Christophe, 2019. "Adaptive estimation in the linear random coefficients model when regressors have limited variation," TSE Working Papers 19-1026, Toulouse School of Economics (TSE).
    8. Alicja Jokiel-Rokita & Rafał Topolnicki, 2019. "Minimum distance estimation of the binormal ROC curve," Statistical Papers, Springer, vol. 60(6), pages 2161-2183, December.
    9. Gérard Kerkyacharian & Dominique Picard & Lucien Birgé & Peter Hall & Oleg Lepski & Enno Mammen & Alexandre Tsybakov & G. Kerkyacharian & D. Picard, 2000. "Thresholding algorithms, maxisets and well-concentrated bases," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 283-344, December.
    10. Sandra Plancade, 2011. "Model selection for hazard rate estimation in presence of censoring," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 74(3), pages 313-347, November.
    11. Gaëlle Chagny, 2015. "Adaptive Warped Kernel Estimators," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 42(2), pages 336-360, June.
    12. Liang Han-Ying & Mammitzsch Volker & Steinebach Josef, 2005. "Nonlinear wavelet density and hazard rate estimation for censored data under dependent observations," Statistics & Risk Modeling, De Gruyter, vol. 23(3), pages 161-180, March.
    13. Salima El Kolei & Fabien Navarro, 2022. "Contrast estimation for noisy observations of diffusion processes via closed-form density expansions," Statistical Inference for Stochastic Processes, Springer, vol. 25(2), pages 303-336, July.
    14. Marina Vannucci & Brani Vidakovic, 1997. "Preventing the Dirac disaster: Wavelet based density estimation," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 6(2), pages 145-159, August.
    15. Kang, Le & Tian, Lili, 2013. "Estimation of the volume under the ROC surface with three ordinal diagnostic categories," Computational Statistics & Data Analysis, Elsevier, vol. 62(C), pages 39-51.
    16. Hoffmann, Marc, 1997. "Minimax estimation of the diffusion coefficient through irregular samplings," Statistics & Probability Letters, Elsevier, vol. 32(1), pages 11-24, February.
    17. Pinheiro, Aluisio & Vidakovic, Brani, 1997. "Estimating the square root of a density via compactly supported wavelets," Computational Statistics & Data Analysis, Elsevier, vol. 25(4), pages 399-415, September.
    18. Liang, Han-Ying & de Uña-Álvarez, Jacobo, 2011. "Wavelet estimation of conditional density with truncated, censored and dependent data," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 448-467, March.
    19. Nicolas Asin & Jan Johannes, 2017. "Adaptive nonparametric estimation in the presence of dependence," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 29(4), pages 694-730, October.
    20. Huang, Lele & Zhao, Junlong & Wang, Huiwen & Wang, Siyang, 2016. "Robust shrinkage estimation and selection for functional multiple linear model through LAD loss," Computational Statistics & Data Analysis, Elsevier, vol. 103(C), pages 384-400.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:testjl:v:24:y:2015:i:3:p:605-631. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.