IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v428y2020ics0304380020301484.html
   My bibliography  Save this article

Predictability of hourly nitrogen dioxide concentration

Author

Listed:
  • Behm, Svenia
  • Haupt, Harry

Abstract

Temporal aggregation of air quality time series is typically used to investigate stylized facts of the underlying series such as multiple seasonal cycles. While aggregation reduces complexity, commonly used aggregates can suffer from non-representativeness or non-robustness. For example, definitions of specific events such as extremes are subjective and may be prone to data contaminations. The aim of this paper is to assess the predictability of hourly nitrogen dioxide concentrations and to explore how predictability depends on (i) level of temporal aggregation, (ii) hour of day, and (iii) concentration level. Exploratory tools are applied to identify structural patterns, problems related to commonly used aggregate statistics and suitable statistical modeling philosophies, capable of handling multiple seasonalities and non-stationarities. Hourly times series and subseries of daily measurements for each hour of day are used to investigate the predictability of pollutant levels for each hour of day, with prediction horizons ranging from one hour to one week ahead. Predictability is assessed by time series cross validation of a loss function based on out-of-sample prediction errors. Empirical evidence on hourly nitrogen dioxide measurements suggests that predictability strongly depends on conditions (i)-(iii) for all statistical models: for specific hours of day, models based on daily series outperform models based on hourly series, while in general predictability deteriorates with exposure level.

Suggested Citation

  • Behm, Svenia & Haupt, Harry, 2020. "Predictability of hourly nitrogen dioxide concentration," Ecological Modelling, Elsevier, vol. 428(C).
  • Handle: RePEc:eee:ecomod:v:428:y:2020:i:c:s0304380020301484
    DOI: 10.1016/j.ecolmodel.2020.109076
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380020301484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2020.109076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bergmeir, Christoph & Hyndman, Rob J. & Koo, Bonsoo, 2018. "A note on the validity of cross-validation for evaluating autoregressive time series prediction," Computational Statistics & Data Analysis, Elsevier, vol. 120(C), pages 70-83.
    2. Wooldridge, Jeffrey M, 1992. "Some Alternatives to the Box-Cox Regression Model," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 33(4), pages 935-955, November.
    3. Sean J. Taylor & Benjamin Letham, 2018. "Forecasting at Scale," The American Statistician, Taylor & Francis Journals, vol. 72(1), pages 37-45, January.
    4. Taylor, James W., 2010. "Triple seasonal methods for short-term electricity demand forecasting," European Journal of Operational Research, Elsevier, vol. 204(1), pages 139-152, July.
    5. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Time Series: Reply," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 343-349, October.
    6. Moisan, Stella & Herrera, Rodrigo & Clements, Adam, 2018. "A dynamic multiple equation approach for forecasting PM2.5 pollution in Santiago, Chile," International Journal of Forecasting, Elsevier, vol. 34(4), pages 566-581.
    7. Bell, William R & Hillmer, Steven C, 1984. "Issues Involved with the Seasonal Adjustment of Economic Time Series," Journal of Business & Economic Statistics, American Statistical Association, vol. 2(4), pages 291-320, October.
    8. Grolemund, Garrett & Wickham, Hadley, 2011. "Dates and Times Made Easy with lubridate," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 40(i03).
    9. Tommaso Proietti & Marco Riani, 2009. "Transformations and seasonal adjustment," Journal of Time Series Analysis, Wiley Blackwell, vol. 30(1), pages 47-69, January.
    10. J W Taylor, 2003. "Short-term electricity demand forecasting using double seasonal exponential smoothing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(8), pages 799-805, August.
    11. Cabaneros, Sheen Mclean & Calautit, John Kaiser & Hughes, Ben, 2020. "Spatial estimation of outdoor NO2 levels in Central London using deep neural networks and a wavelet decomposition technique," Ecological Modelling, Elsevier, vol. 424(C).
    12. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    13. Gould, Phillip G. & Koehler, Anne B. & Ord, J. Keith & Snyder, Ralph D. & Hyndman, Rob J. & Vahid-Araghi, Farshid, 2008. "Forecasting time series with multiple seasonal patterns," European Journal of Operational Research, Elsevier, vol. 191(1), pages 207-222, November.
    14. Marie-Eve Héroux & H. Anderson & Richard Atkinson & Bert Brunekreef & Aaron Cohen & Francesco Forastiere & Fintan Hurley & Klea Katsouyanni & Daniel Krewski & Michal Krzyzanowski & Nino Künzli & Inga , 2015. "Quantifying the health impacts of ambient air pollutants: recommendations of a WHO/Europe project," International Journal of Public Health, Springer;Swiss School of Public Health (SSPH+), vol. 60(5), pages 619-627, July.
    15. Wickham, Hadley, 2007. "Reshaping Data with the reshape Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 21(i12).
    16. Arora, Siddharth & Taylor, James W., 2018. "Rule-based autoregressive moving average models for forecasting load on special days: A case study for France," European Journal of Operational Research, Elsevier, vol. 266(1), pages 259-268.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barrow, Devon & Kourentzes, Nikolaos, 2018. "The impact of special days in call arrivals forecasting: A neural network approach to modelling special days," European Journal of Operational Research, Elsevier, vol. 264(3), pages 967-977.
    2. Trull, Oscar & García-Díaz, J. Carlos & Troncoso, Alicia, 2021. "One-day-ahead electricity demand forecasting in holidays using discrete-interval moving seasonalities," Energy, Elsevier, vol. 231(C).
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Webel, Karsten, 2022. "A review of some recent developments in the modelling and seasonal adjustment of infra-monthly time series," Discussion Papers 31/2022, Deutsche Bundesbank.
    5. Aviral Kumar Tiwari & Claudiu T Albulescu & Phouphet Kyophilavong, 2014. "A comparison of different forecasting models of the international trade in India," Economics Bulletin, AccessEcon, vol. 34(1), pages 420-429.
    6. Winita Sulandari & Yudho Yudhanto & Sri Subanti & Crisma Devika Setiawan & Riskhia Hapsari & Paulo Canas Rodrigues, 2023. "Comparing the Simple to Complex Automatic Methods with the Ensemble Approach in Forecasting Electrical Time Series Data," Energies, MDPI, vol. 16(22), pages 1-16, November.
    7. Clements, A.E. & Hurn, A.S. & Li, Z., 2016. "Forecasting day-ahead electricity load using a multiple equation time series approach," European Journal of Operational Research, Elsevier, vol. 251(2), pages 522-530.
    8. Óscar Trull & J. Carlos García-Díaz & Alicia Troncoso, 2019. "Application of Discrete-Interval Moving Seasonalities to Spanish Electricity Demand Forecasting during Easter," Energies, MDPI, vol. 12(6), pages 1-16, March.
    9. Grzegorz Dudek, 2021. "Short-Term Load Forecasting Using Neural Networks with Pattern Similarity-Based Error Weights," Energies, MDPI, vol. 14(11), pages 1-18, May.
    10. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    11. Mauro Bernardi & Francesco Lisi, 2020. "Point and Interval Forecasting of Zonal Electricity Prices and Demand Using Heteroscedastic Models: The IPEX Case," Energies, MDPI, vol. 13(23), pages 1-34, November.
    12. Arora, Siddharth & Taylor, James W., 2016. "Forecasting electricity smart meter data using conditional kernel density estimation," Omega, Elsevier, vol. 59(PA), pages 47-59.
    13. Chethana Dharmawardane & Ville Sillanpää & Jan Holmström, 2021. "High-frequency forecasting for grocery point-of-sales: intervention in practice and theoretical implications for operational design," Operations Management Research, Springer, vol. 14(1), pages 38-60, June.
    14. Ding, Jia & Wang, Maolin & Ping, Zuowei & Fu, Dongfei & Vassiliadis, Vassilios S., 2020. "An integrated method based on relevance vector machine for short-term load forecasting," European Journal of Operational Research, Elsevier, vol. 287(2), pages 497-510.
    15. García, Juan R. & Pacce, Matías & Rodrigo, Tomasa & Ruiz de Aguirre, Pep & Ulloa, Camilo A., 2021. "Measuring and forecasting retail trade in real time using card transactional data," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1235-1246.
    16. Jose Juan Caceres-Hernandez & Gloria Martin-Rodriguez & Jonay Hernandez-Martin, 2022. "A proposal for measuring and comparing seasonal variations in hourly economic time series," Empirical Economics, Springer, vol. 62(4), pages 1995-2021, April.
    17. Oscar Trull & J. Carlos Garc'ia-D'iaz & Angel Peir'o-Signes, 2024. "mshw, a forecasting library to predict short-term electricity demand based on multiple seasonal Holt-Winters," Papers 2402.10982, arXiv.org.
    18. Kim, Myung Suk, 2013. "Modeling special-day effects for forecasting intraday electricity demand," European Journal of Operational Research, Elsevier, vol. 230(1), pages 170-180.
    19. Oscar Trull & Angel Peiró-Signes & J. Carlos García-Díaz, 2019. "Electricity Forecasting Improvement in a Destination Using Tourism Indicators," Sustainability, MDPI, vol. 11(13), pages 1-16, July.
    20. Nystrup, Peter & Lindström, Erik & Møller, Jan K. & Madsen, Henrik, 2021. "Dimensionality reduction in forecasting with temporal hierarchies," International Journal of Forecasting, Elsevier, vol. 37(3), pages 1127-1146.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:428:y:2020:i:c:s0304380020301484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.